scholarly journals ANALISIS PENYEBAB PENOLAKAN PRODUK PERIKANAN INDONESIA OLEH UNI EROPA PERIODE 2007 – 2017 DENGAN PENDEKATAN ROOT CAUSE ANALYSIS

2019 ◽  
Vol 21 (2) ◽  
pp. 149
Author(s):  
Heny Irawati ◽  
Feri Kusnandar ◽  
Harsi D Kusumaningrum

<p>Produk perikanan yang diekspor ke Uni Eropa dipersyaratkan untuk diproduksi dari Unit Pengolahan Ikan (UPI) yang telah mempunyai sertifikat penerapan <em>Hazard Analysis and Critical Control Point</em> (HACCP) Grade A. Beberapa kasus penolakan oleh negara pengimpor masih terjadi dengan alasan ditemukannya cemaran mikrobiologi dan kimia yang melebihi ambang batas standar Uni Eropa. Tujuan penelitian ini adalah untuk mengidentifikasi penyebab penolakan dan faktor utama yang berpengaruh sebagai penyebab kasus penolakan tersebut dengan menggunakan pendekatan <em>Root Cause Analysis </em>(RCA). Data yang digunakan adalah data penolakan produk perikanan yang diekspor ke Uni Eropa selama periode 2007-2017. Hasil analisis menunjukkan bahwa penyebab utama penolakan produk perikanan Indonesia utama adalah cemaran merkuri (33 kasus) dan cemaran histamin (16 kasus). Cemaran merkuri terjadi oleh pencemaran lingkungan perairan oleh limbah industri yang menggunakan merkuri dan frekuensi monitoring di setiap rantai proses yang kurang memadai. Cemaran histamin terjadi karena kurangnya pengetahuan nelayan dan pelaku usaha di tingkat produsen primer dalam hal cara penanganan ikan yang baik dan masih belum tercapainya penerapan <em>cold chain system </em>yang baik pada rantai proses.</p>

Author(s):  
Juan C. Ramirez ◽  
Mark Fecke ◽  
Delmar Trey Morrison ◽  
John D. Martens

An explosion occurred in the firebox of an industrial boiler with a nominal fuel input rate of 100 MW (340 million Btu/hr), in a processing plant during final commissioning of the burner systems. This paper describes the investigation of the incident, root cause analysis, and lessons learned from the incident. The original burners in the boiler had recently been replaced with low NOx burners, and the facility was in the process of commissioning the new burner system. The boiler was running only on natural gas igniters at the time of the incident. While firing on igniters, an undetected stoppage of the control equipment occurred, which led to a restriction of airflow through the secondary air dampers. The boiler controls included programmable logic controllers (PLCs) for both the combustion control system (CCS) for regulation and the burner management system (BMS) for safety functions. The BMS was intended to detect a loss of control such as this and immediately stop fuel to the boiler; however, it did not. The BMS PLC was not configured to detect the dangerous states and allowed the igniters to continue to fire. An explosion subsequently occurred within the boiler firebox that caused extensive damages to the facility and equipment. This paper will describe the incident investigation and determination of multiple root causes for failure of the BMS to prevent the explosion. The inadequate configuration of the control systems was likely present for some time prior to the incident, and the explosion was eventually caused when the right conditions occurred during this commissioning. We found through the investigation that the BMS deficiencies could have been detected and prevented (and almost were) through standard hazard analysis techniques common in the chemical processing industries. This paper will also discuss how hazard analysis can be applied to detect and prevent similar system failures.


Vaccine ◽  
2017 ◽  
Vol 35 (17) ◽  
pp. 2198-2202 ◽  
Author(s):  
Pat Lennon ◽  
Brian Atuhaire ◽  
Shahrzad Yavari ◽  
Vidya Sampath ◽  
Mercy Mvundura ◽  
...  

2011 ◽  
pp. 78-86
Author(s):  
R. Kilian ◽  
J. Beck ◽  
H. Lang ◽  
V. Schneider ◽  
T. Schönherr ◽  
...  

2012 ◽  
Vol 132 (10) ◽  
pp. 1689-1697
Author(s):  
Yutaka Kudo ◽  
Tomohiro Morimura ◽  
Kiminori Sugauchi ◽  
Tetsuya Masuishi ◽  
Norihisa Komoda

Author(s):  
Dan Bodoh ◽  
Kent Erington ◽  
Kris Dickson ◽  
George Lange ◽  
Carey Wu ◽  
...  

Abstract Laser-assisted device alteration (LADA) is an established technique used to identify critical speed paths in integrated circuits. LADA can reveal the physical location of a speed path, but not the timing of the speed path. This paper describes the root cause analysis benefits of 1064nm time resolved LADA (TR-LADA) with a picosecond laser. It shows several examples of how picosecond TR-LADA has complemented the existing fault isolation toolset and has allowed for quicker resolution of design and manufacturing issues. The paper explains how TR-LADA increases the LADA localization resolution by eliminating the well interaction, provides the timing of the event detected by LADA, indicates the propagation direction of the critical signals detected by LADA, allows the analyst to infer the logic values of the critical signals, and separates multiple interactions occurring at the same site for better understanding of the critical signals.


Sign in / Sign up

Export Citation Format

Share Document