scholarly journals The Origin of Electromagnetic Mass (Electromagnetic Inertia)

2021 ◽  
Author(s):  
Wim Vegt

Newton described in his second law of motion the classical definition of mass (inertia). However, it is impossible to calculate with Newton’s second law of motion the (electromagnetic) mass of a beam of light. Because the speed of light is a universal constant which follows from Albert Einstein’s Theory of Special Relativity, it is impossible to accelerate or to slow down a beam of light and for that reason it is impossible to determine the electromagnetic mass of a beam of light (free electromagnetic radiation) by Newton’s second law. To calculate the electromagnetic mass of free or confined electromagnetic radiation, the fundamental concept of the New Theory has been used that the Universe is in a perfect Equilibrium and that any electromagnetic field configuration is in a perfect equilibrium with itself and its surrounding. From this fundamental concept follows a different definition of (confined) electromagnetic mass. Electromagnetic mass (or inertia) has been determined by the relativistic Lorentz transformation of the radiation pressures in all different directions and the disturbance of a uniform motion (or position at rest) of confined electromagnetic radiation results in a relativistic effect which we measure (experience) as electromagnetic mass (inertia). The mass in [kg] of an object will be generally measured by acceleration (or deceleration) of the object according Newton’s second law of motion. In the theory of special relativity, the speed of light is a fundamental constant and the intensity of the light is not a universal constant. The calculate the relativistic mass of Confined Electromagnetic Radiation, we start with a thought experiment in which a beam of light is propagating between two 100 % reflecting mirrors, indicated as Mirror A and Mirror B. Both mirrors are part of a rigid construction and the relative velocity between both mirrors always equals zero. The results of this calculation will be be generalized for any kind of electromagnetic radiation which has been confined by its own electromagnetic and gravitational field. When the speed of the observer has the same speed as the speed of the light source, then the observer and the light source are relative at rest. And the same light intensity will be measured at the location of the emitter and at the location of the observer.

2021 ◽  
Author(s):  
Wim Vegt

Newton described in his second law of motion the classical definition of mass (inertia). However, it is impossible to calculate with Newton’s second law of motion the (electromagnetic) mass of a beam of light (Ref. [1], [2],[3]). Because the speed of light is a universal constant which follows from Albert Einstein’s Theory of Special Relativity, it is impossible to accelerate or to slow down a beam of light and for that reason it is impossible to determine the electromagnetic mass of a beam of light (free electromagnetic radiation) by Newton’s second law. To calculate the electromagnetic mass of free or confined electromagnetic radiation, the fundamental concept of the New Theory has been used that the Universe is in a perfect Equilibrium and that any electromagnetic field configuration is in a perfect equilibrium with itself and its surrounding. From this fundamental concept follows a different definition of (confined) electromagnetic mass. Electromagnetic mass (or inertia) has been determined by the relativistic Lorentz transformation of the radiation pressures in all different directions and the disturbance of a uniform motion (or position at rest) of confined electromagnetic radiation results in a relativistic effect which we measure (experience) as electromagnetic mass (inertia). The mass in [kg] of an object will be generally measured by acceleration (or deceleration) of the object according Newton’s second law of motion. In the theory of special relativity, the speed of light is a fundamental constant and the intensity of the light is not a universal constant. The calculate the relativistic mass of Confined Electromagnetic Radiation, we start with a thought experiment in which a beam of light is propagating between two 100 % reflecting mirrors, indicated as Mirror A and Mirror B. Both mirrors are part of a rigid construction and the relative velocity between both mirrors always equals zero. The results of this calculation will be generalized for any kind of electromagnetic radiation which has been confined by its own electromagnetic and gravitational field. When the speed of the observer has the same speed as the speed of the light source, then the observer and the light source are relative at rest. And the same light intensity will be measured at the location of the emitter and at the location of the observer.


2020 ◽  
Author(s):  
Wim Vegt

Within the scope of this article, LIGHT has been considered as any arbitrary Electromagnetic Radiation within a very wide frequency range, because during the transformation from Visible Light into the Gravitational Electromagnetic Confinement, the frequency changes in a very wide range. This frequency transformation is possible because of the combined Lorentz / Doppler-Effect transformation during the collapse (contraction) of the radiation when the Gravitational Electromagnetic Confinement has been formed (Implosion of Visible Light). Within the scope of this article MATTER is considered to be any kind of 3-dimensional confined (Electromagnetic) energy. The inner structure of a photon is based on a 3-dimensional anisotropic equilibrium within the electromagnetic pulses in which an equilibrium does exist for the Electric and the Magnetic Fields separately generated by the pulses. A photon cannot be considered as a particle. Because particles are 3-dimensional confinements. Photons are anisotropic (in 1st and 2nd dimension a particle and in the 3rd dimension a wave) confinements of electromagnetic pulses, generated during the energy transitions within the atoms. Photons are 2-dimensional confinements of electromagnetic energy and demonstrate the property of inertia (electromagnetic mass) in the 2 directions of confinement. In the 3rd direction, the direction of propagation, photons can only be considered as an electromagnetic wave and for that reason do not demonstrate the property of inertia. Electromagnetic waves cannot be accelerated or decelerated because the speed of light is a universal constant. For that reason, photons interact with a gravitational field in an anisotropic way. Due to a gravitational field, photons can be accelerated or decelerated in the directions perpendicular to the direction of propagation and follow a curved path. But a gravitational field in the direction of propagation will have no impact on the speed of the photons, which will remain the unchanged universal constant, the speed of light. Photonics is the physical science of light based on the concept of “photons” introduced by Albert Einstein in the early 20th century. Einstein introduced this concept in the “particle-wave duality” discussion with Niels Bohr to demonstrate that even light has particle properties (mass and momentum) and wave properties (frequency). That concept became a metaphor and from that time on a beam of light has been generally considered as a beam of particles (photons). Which is a wrong understanding. Light particles do not exist. Photons are nothing else but electromagnetic complex wave configurations and light particles are not like “particles” but separated electromagnetic wave packages, 2-dimensionally confined in the directions perpendicular to the direction of propagation and in a perfect equilibrium with the radiation pressure and the inertia of electromagnetic energy in the forward direction, controlling the speed of light. This new theory will explain how electromagnetic wave packages demonstrate inertia, mass and momentum and which forces keep the wave packages together in a way that they can be measured like particles with their own specific mass and momentum. All we know about light, and in generally about any electromagnetic field configuration, has been based only on two fundamental theories. James Clerk Maxwell introduced in 1865 the “Theory of Electrodynamics” with the publication: “A Dynamical Theory of the Electromagnetic Field” and Albert Einstein introduced in 1905 the “Theory of Special Relativity” with the publication: “On the Electrodynamics of Moving Bodies” and in 1913 the “Theory of General Relativity” with the publication ”Outline of a Generalized Theory of Relativity and of a Theory of Gravitation”. However, both theories are not capable to explain the property of electromagnetic mass and in specific the anisotropy of the phenomenon of electromagnetic mass presented e.g. in a LASER beam. To understand what electromagnetic inertia and the corresponding electromagnetic mass is and how the anisotropy of electromagnetic mass can be explained and how it has to be defined, a New Theory about Light has to be developed. A part of this “New Theory about Light”, based on Newton’s well- known Equation in 3 dimensions will be published in this article in an extension into 4 dimensions. Newton’s 4-dimensional law in the 3 spatial dimensions results in an improved version of the classical Maxwell equations and Newton’s law in the 4th dimension (time) results in the quantum mechanical Schrödinger wave equation (at non-relativistic velocities) and the relativistic Dirac equation.


Universe ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 55 ◽  
Author(s):  
Antonio N. Bernal ◽  
Miguel A. Javaloyes ◽  
Miguel Sánchez

Physical foundations for relativistic spacetimes are revisited in order to check at what extent Finsler spacetimes lie in their framework. Arguments based on inertial observers (as in the foundations of special relativity and classical mechanics) are shown to correspond with a double linear approximation in the measurement of space and time. While general relativity appears by dropping the first linearization, Finsler spacetimes appear by dropping the second one. The classical Ehlers–Pirani–Schild approach is carefully discussed and shown to be compatible with the Lorentz–Finsler case. The precise mathematical definition of Finsler spacetime is discussed by using the space of observers. Special care is taken in some issues such as the fact that a Lorentz–Finsler metric would be physically measurable only on the causal directions for a cone structure, the implications for models of spacetimes of some apparently innocuous hypotheses on differentiability, or the possibilities of measurement of a varying speed of light.


Author(s):  
H Rahnejat

The paper commemorates the centenary of the special theory of relativity, which effectively sets the limit for the structure of space-time to that of the stationary system. The long lasting debate for definition of concepts of instantaneity and simultaneity was thus resolved by the declaration of constancy of speed of light in vacuo as a law of physics. All motions were thus bounded by the light cone and described by the properties of differential geometry, firmly anchored in the calculus of variations. The key contribution underpinning the theory was the resolution of the contradiction imposed by the Galilean transformation through physical explanation and the adoption of the Lorentzian transformation. This highlighted the relative nature of both space and time and the linkage of these to preserve the sanctity of the light cone. The resulting space-time geometry was then founded on the traditional calculus of variation with the addition of this transformation. This retains the time as an independent coordinate and its linkage to space in an explicit form. One implication of this approach has been the retention of the concept of infinitum for some physical quantities as a drawback for use of the Lorentzian transformation. The paper shows that this singular behaviour need not arise if the explicit linkage in space-time is abandoned in favour of the implicit inclusion of time as a link between the curved structure of space and the speed of light, thus restating the calculus of variation in line with special relativity. This points to a closed loop space-matter field, which may belie the fabric of the continuum. One implication of this interpretation is that a small variation in speed of light within the field would be required to dispense with the aforementioned singular nature of the Lorentzian boost, while still remaining within the spirit of special relativity.


2020 ◽  
Author(s):  
Wim Vegt

Within the scope of this article, LIGHT has been considered as any arbitrary Electromagnetic Radiation within a very wide frequency range, because during the transformation from Visible Light into the Gravitational Electromagnetic Confinement, the frequency changes in a very wide range. This frequency transformation is possible because of the combined Lorentz / Doppler-Effect transformation during the collapse (contraction) of the radiation when the Gravitational Electromagnetic Confinement has been formed (Implosion of Visible Light). Within the scope of this article MATTER is considered to be any kind of 3-dimensional confined (Electromagnetic) energy. The inner structure of a photon is based on a 3dimensional anisotropic equilibrium within the electromagnetic pulses in which an equilibrium does exist for the Electric and the Magnetic Fields separately generated by the pulses. A photon cannot be considered as a particle. Because particles are 3-dimensional confinements. Photons are anisotropic (in 1st and 2nd dimension a particle and in the 3rd dimension a wave) confinements of electromagnetic pulses, generated during the energy transitions within the atoms. Photons are 2-dimensional confinements of electromagnetic energy and demonstrate the property of inertia (electromagnetic mass) in the 2 directions of confinement. In the 3rd direction, the direction of propagation, photons can only be considered as an electromagnetic wave and for that reason do not demonstrate the property of inertia. Electromagnetic waves cannot be accelerated or decelerated because the speed of light is a universal constant. For that reason, photons interact with a gravitational field in an anisotropic way. Due to a gravitational field, photons can be accelerated or decelerated in the directions perpendicular to the direction of propagation and follow a curved path. But a gravitational field in the direction of propagation will have no impact on the speed of the photons, which will remain the unchanged universal constant, the speed of light. Photonics is the physical science of light based on the concept of “photons” introduced by Albert Einstein in the early 20th century. Einstein introduced this concept in the “particle-wave duality” discussion with Niels Bohr to demonstrate that even light has particle properties (mass and momentum) and wave properties (frequency). That concept became a metaphor and from that time on a beam of light has been generally considered as a beam of particles (photons). Which is a wrong understanding. Light particles do not exist. Photons are nothing else but electromagnetic complex wave configurations and light particles are not like “particles” but separated electromagnetic wave packages, 2-dimensionally confined in the directions perpendicular to the direction of propagation and in a perfect equilibrium with the radiation pressure and the inertia of electromagnetic energy in the forward direction, controlling the speed of light. This new theory will explain how electromagnetic wave packages demonstrate inertia, mass and momentum and which forces keep the wave packages together in a way that they can be measured like particles with their own specific mass and momentum. All we know about light, and in generally about any electromagnetic field configuration, has been 2 based only on two fundamental theories. James Clerk Maxwell introduced in 1865 the “Theory of Electrodynamics” with the publication: “A Dynamical Theory of the Electromagnetic Field” and Albert Einstein introduced in 1905 the “Theory of Special Relativity” with the publication: “On the Electrodynamics of Moving Bodies” and in 1913 the “Theory of General Relativity” with the publication ”Outline of a Generalized Theory of Relativity and of a Theory of Gravitation”. However, both theories are not capable to explain the property of electromagnetic mass and in specific the anisotropy of the phenomenon of electromagnetic mass presented e.g. in a LASER beam. To understand what electromagnetic inertia and the corresponding electromagnetic mass is and how the anisotropy of electromagnetic mass can be explained and how it has to be defined, a New Theory about Light has to be developed. A part of this “New Theory about Light”, based on Newton’s well- known Equation in 3 dimensions will be published in this article in an extension into 4 dimensions. Newton’s 4-dimensional law in the 3 spatial dimensions results in an improved version of the classical Maxwell equations and Newton’s law in the 4th dimension (time) results in the quantum mechanical Schrödinger wave equation (at non-relativistic velocities) and the relativistic Dirac equation.


2020 ◽  
Author(s):  
Wim Vegt

Within the scope of this article, LIGHT has been considered as any arbitrary Electromagnetic Radiation within a very wide frequency range, because during the transformation from Visible Light into the Gravitational Electromagnetic Confinement, the frequency changes in a very wide range. This frequency transformation is possible because of the combined Lorentz / Doppler-Effect transformation during the collapse (contraction) of the radiation when the Gravitational Electromagnetic Confinement has been formed (Implosion of Visible Light). Within the scope of this article MATTER is considered to be any kind of 3-dimensional confined (Electromagnetic) energy. The inner structure of a photon is based on a 3-dimensional anisotropic equilibrium within the electromagnetic pulses in which an equilibrium does exist for the Electric and the Magnetic Fields separately generated by the pulses. A photon cannot be considered as a particle. Because particles are 3-dimensional confinements. Photons are anisotropic (in 1st and 2nd dimension a particle and in the 3rd dimension a wave) confinements of electromagnetic pulses, generated during the energy transitions within the atoms. Photons are 2-dimensional confinements of electromagnetic energy and demonstrate the property of inertia (electromagnetic mass) in the 2 directions of confinement. In the 3rd direction, the direction of propagation, photons can only be considered as an electromagnetic wave and for that reason do not demonstrate the property of inertia. Electromagnetic waves cannot be accelerated or decelerated because the speed of light is a universal constant. For that reason, photons interact with a gravitational field in an anisotropic way. Due to a gravitational field, photons can be accelerated or decelerated in the directions perpendicular to the direction of propagation and follow a curved path. But a gravitational field in the direction of propagation will have no impact on the speed of the photons, which will remain the unchanged universal constant, the speed of light. Photonics is the physical science of light based on the concept of “photons” introduced by Albert Einstein in the early 20th century. Einstein introduced this concept in the “particle-wave duality” discussion with Niels Bohr to demonstrate that even light has particle properties (mass and momentum) and wave properties (frequency). That concept became a metaphor and from that time on a beam of light has been generally considered as a beam of particles (photons). Which is a wrong understanding. Light particles do not exist. Photons are nothing else but electromagnetic complex wave configurations and light particles are not like “particles” but separated electromagnetic wave packages, 2-dimensionally confined in the directions perpendicular to the direction of propagation and in a perfect equilibrium with the radiation pressure and the inertia of electromagnetic energy in the forward direction, controlling the speed of light. This new theory will explain how electromagnetic wave packages demonstrate inertia, mass and momentum and which forces keep the wave packages together in a way that they can be measured like particles with their own specific mass and momentum. All we know about light, and in generally about any electromagnetic field configuration, has been based only on two fundamental theories. James Clerk Maxwell introduced in 1865 the “Theory of Electrodynamics” with the publication: “A Dynamical Theory of the Electromagnetic Field” and Albert Einstein introduced in 1905 the “Theory of Special Relativity” with the publication: “On the Electrodynamics of Moving Bodies” and in 1913 the “Theory of General Relativity” with the publication ”Outline of a Generalized Theory of Relativity and of a Theory of Gravitation”. However, both theories are not capable to explain the property of electromagnetic mass and in specific the anisotropy of the phenomenon of electromagnetic mass presented e.g. in a LASER beam. To understand what electromagnetic inertia and the corresponding electromagnetic mass is and how the anisotropy of electromagnetic mass can be explained and how it has to be defined, a New Theory about Light has to be developed. A part of this “New Theory about Light”, based on Newton’s well- known Equation in 3 dimensions will be published in this article in an extension into 4 dimensions. Newton’s 4-dimensional law in the 3 spatial dimensions results in an improved version of the classical Maxwell equations and Newton’s law in the 4th dimension (time) results in the quantum mechanical Schrödinger wave equation (at non-relativistic velocities) and the relativistic Dirac equation.


2019 ◽  
Vol 4 (10) ◽  
pp. 24-41
Author(s):  
Wim Vegt

The inner structure of a photon is based on a 3-dimensional anisotropic equilibrium within the electromagnetic pulses in which an equilibrium does exist for the Electric and the Magnetic Fields separately generated by the pulses. A photon cannot be considered as a particle. Because particles are 3-dimensional confinements. Photons are anisotropic (in 1st and 2nd dimension a particle and in the 3rd dimension a wave) confinements of electromagnetic pulses, generated during the energy transitions within the atoms. Photons are 2-dimensional confinements of electromagnetic energy and demonstrate the property of inertia (electromagnetic mass) in the 2 directions of confinement.  In the 3rd direction, the direction of propagation, photons can only be considered as an electromagnetic wave and for that reason do not demonstrate the property of inertia. Electromagnetic waves cannot be accelerated or decelerated because the speed of light is a universal constant. For that reason, photons interact with a gravitational field in an anisotropic way. Due to a gravitational field, photons can be accelerated or decelerated in the directions perpendicular to the direction of propagation and follow a curved path. But a gravitational field in the direction of propagation will have no impact on the speed of the photons, which will remain the unchanged universal constant, the speed of light.  Photonics is the physical science of light based on the concept of “photons” introduced by Albert Einstein in the early 20th century. Einstein introduced this concept in the “particle-wave duality” discussion with Niels Bohr to demonstrate that even light has particle properties (mass and momentum) and wave properties (frequency). That concept became a metaphor and from that time on a beam of light has been generally considered as a beam of particles (photons). Which is a wrong understanding. Light particles do not exist. Photons are nothing else but electromagnetic complex wave configurations and light particles are not like “particles” but separated electromagnetic wave packages, 2-dimensionally confined in the directions perpendicular to the direction of propagation and in a perfect equilibrium with the radiation pressure and the inertia of electromagnetic energy in the forward direction, controlling the speed of light. This new theory will explain how electromagnetic wave packages demonstrate inertia, mass and momentum and which forces keep the wave packages together in a way that they can be measured like particles with their own specific mass and momentum. All we know about light, and in generally about any electromagnetic field configuration, has been based only on two fundamental theories. James Clerk Maxwell introduced in 1865 the “Theory of Electrodynamics” with the publication: “A Dynamical Theory of the Electromagnetic Field” and Albert Einstein introduced in 1905 the “Theory of Special Relativity” with the publication: “On the Electrodynamics of Moving Bodies” and in 1913 the  “Theory of General Relativity” with the publication ”Outline of a Generalized Theory of Relativity and of a Theory of Gravitation”. However, both theories are not capable to explain the property of electromagnetic mass and in specific the anisotropy of the phenomenon of electromagnetic mass presented e.g. in a LASER beam. To understand what electromagnetic inertia and the corresponding electromagnetic mass is and how the anisotropy of electromagnetic mass can be explained and how it has to be defined, a New Theory about Light has to be developed. A part of this “New Theory about Light”, based on Newton’s well- known Equation in 3 dimensions will be published in this article in an extension into 4 dimensions. Newton’s 4-dimensional law in the 3 spatial dimensions results in an improved version of the classical Maxwell equations and Newton’s law in the 4th dimension (time) results in the quantum mechanical Schrödinger wave equation (at non-relativistic velocities) and the relativistic Dirac equation.


Author(s):  
Steven L. Garrett

Abstract If a solid is initially at rest and equal and opposing forces are applied to that object, Newton’s Second Law guarantees that the object will remain at rest because the net force on the sample is zero. If that object is an elastic solid, then those forces will cause the solid to deform by an amount that is directly proportional to those applied forces. When the forces are removed, the sample will return to its original shape and size. That reversibility is the characteristic that is required if we say the behavior of the solid is “elastic.” This chapter will quantify the elastic behavior of solids by introducing the concepts of stress and strain and expressing their linear relationship through the definition of elastic moduli that depend only upon the material and the nature of the deformation and not upon the shape of the object. Those concepts allow us to generalize Hooke’s law. As before, the combination of a linear equation of state with Newton’s Second Law will now describe wave motion in solids. The introduction of a relaxation time, through the Maxwell model, will let these results be generalized to viscoelastic materials and then be applied to rubber vibration isolators.


2019 ◽  
Vol 4 (11) ◽  
pp. 52-69
Author(s):  
Wim Vegt

Within the scope of this article, LIGHT has been considered as any arbitrary Electromagnetic Radiation within a very wide frequency range, because during the transformation from Visible Light into the Gravitational Electromagnetic Confinement, the frequency changes in a very wide range.  This frequency transformation is possible because of the combined Lorentz / Doppler-Effect transformation during the collapse (contraction) of the radiation when the Gravitational Electromagnetic Confinement has been formed (Implosion of Visible Light).  Within the scope of this article MATTER is considered to be any kind of 3-dimensional confined (Electromagnetic) energy. The inner structure of a photon is based on a 3-dimensional anisotropic equilibrium within the electromagnetic pulses in which an equilibrium does exist for the Electric and the Magnetic Fields separately generated by the pulses. A photon cannot be considered as a particle. Because particles are 3-dimensional confinements. Photons are anisotropic (in 1st and 2nd dimension a particle and in the 3rd dimension a wave) confinements of electromagnetic pulses, generated during the energy transitions within the atoms. Photons are 2-dimensional confinements of electromagnetic energy and demonstrate the property of inertia (electromagnetic mass) in the 2 directions of confinement.  In the 3rd direction, the direction of propagation, photons can only be considered as an electromagnetic wave and for that reason do not demonstrate the property of inertia. Electromagnetic waves cannot be accelerated or decelerated because the speed of light is a universal constant. For that reason, photons interact with a gravitational field in an anisotropic way. Due to a gravitational field, photons can be accelerated or decelerated in the directions perpendicular to the direction of propagation and follow a curved path. But a gravitational field in the direction of propagation will have no impact on the speed of the photons, which will remain the unchanged universal constant, the speed of light.  Photonics is the physical science of light based on the concept of “photons” introduced by Albert Einstein in the early 20th century. Einstein introduced this concept in the “particle-wave duality” discussion with Niels Bohr to demonstrate that even light has particle properties (mass and momentum) and wave properties (frequency). That concept became a metaphor and from that time on a beam of light has been generally considered as a beam of particles (photons). Which is a wrong understanding. Light particles do not exist. Photons are nothing else but electromagnetic complex wave configurations and light particles are not like “particles” but separated electromagnetic wave packages, 2-dimensionally confined in the directions perpendicular to the direction of propagation and in a perfect equilibrium with the radiation pressure and the inertia of electromagnetic energy in the forward direction, controlling the speed of light. This new theory will explain how electromagnetic wave packages demonstrate inertia, mass and momentum and which forces keep the wave packages together in a way that they can be measured like particles with their own specific mass and momentum. All we know about light, and in generally about any electromagnetic field configuration, has been based only on two fundamental theories. James Clerk Maxwell introduced in 1865 the “Theory of Electrodynamics” with the publication: “A Dynamical Theory of the Electromagnetic Field” and Albert Einstein introduced in 1905 the “Theory of Special Relativity” with the publication: “On the Electrodynamics of Moving Bodies” and in 1913 the  “Theory of General Relativity” with the publication ”Outline of a Generalized Theory of Relativity and of a Theory of Gravitation”. However, both theories are not capable to explain the property of electromagnetic mass and in specific the anisotropy of the phenomenon of electromagnetic mass presented e.g. in a LASER beam. To understand what electromagnetic inertia and the corresponding electromagnetic mass is and how the anisotropy of electromagnetic mass can be explained and how it has to be defined, a New Theory about Light has to be developed. A part of this “New Theory about Light”, based on Newton’s well- known Equation in 3 dimensions will be published in this article in an extension into 4 dimensions. Newton’s 4-dimensional law in the 3 spatial dimensions results in an improved version of the classical Maxwell equations and Newton’s law in the 4th dimension (time) results in the quantum mechanical Schrödinger wave equation (at non-relativistic velocities) and the relativistic Dirac equation.


Sign in / Sign up

Export Citation Format

Share Document