scholarly journals Transcranial direct current stimulation (tDCS) to dorsolateral prefrontal cortex influences perceived pleasantness of food

2022 ◽  
Author(s):  
Eric C Anderson ◽  
Julie Cantelon ◽  
Amanda Holmes ◽  
Grace Giles ◽  
Tad Brunye ◽  
...  

The ability to regulate the intake of unhealthy foods is critical in modern, calorie dense food environments. Frontal areas of the brain, such as the dorsolateral prefrontal cortex (DLPFC), are thought to play a central role in cognitive control and emotional regulation. Therefore, increasing activity in the DLPFC may enhance these functions which could improve the ability to reappraise and resist consuming highly palatable but unhealthy foods. One technique for modifying brain activity is transcranial direct current stimulation (tDCS), a non-invasive technique for modulating neuronal excitability that can influence performance on a range of cognitive tasks. We tested whether tDCS targeting the DLPFC would influence how people perceived highly palatable foods. In the present study, 98 participants were randomly assigned to receive a single session of active tDCS or sham stimulation. While receiving active or sham stimulation, participants viewed images of highly palatable foods and reported how pleasant it would be to eat each food (liking) and how strong their urge was to eat each food (wanting). We found that participants who received active versus sham tDCS stimulation perceived food as less pleasant, but there was no difference in how strong their urge was to eat the foods. Our findings suggest that modulating excitability in the DLPFC influences “liking” but not “wanting” of highly palatable foods. Non-invasive brain stimulation might be a useful technique for influencing the hedonic experience of eating and might have implications for changing food consumption.

2020 ◽  
Vol 10 (11) ◽  
pp. 792
Author(s):  
Djamila Bennabi ◽  
Nicolas Carvalho ◽  
Ambra Bisio ◽  
Juliana Teti Mayer ◽  
Thierry Pozzo ◽  
...  

Background: Transcranial direct current stimulation (tDCS) applied to the left dorsolateral prefrontal cortex (dlPFC) might be a promising treatment strategy for depression. As disturbances in psychomotor activity are one of the key features of unipolar depression are, we aimed to evaluate the behavioral effects of ten tDCS sessions over a 5-day period on psychomotor retardation in depressed patients. Methods: Twenty-three treatment-resistant depressed patients received either active or sham anodal tDCS to the left dorsolateral prefrontal cortex (2 mA, 10 sessions over 1 week). Psychomotor functioning was registered by means of observer ratings (Salpêtrière Retardation Rating Scale—SRRS) and objective measures (kinematical analysis of movements, automatic imitation). Results: tDCS sessions resulted in improvements on SRRS scores, although active tDCS was not significantly superior to sham tDCS on the kinematical parameters. Furthermore, no general additional antidepressant effect of tDCS was observed. The relatively small sample size and the short periods of observation should be considered when interpreting these results. Conclusion: tDCS did not induce a clinically relevant effect on psychomotor function in active and sham stimulation groups.


2021 ◽  
pp. 1-11
Author(s):  
Daniela Smirni ◽  
Massimiliano Oliveri ◽  
Eliana Misuraca ◽  
Angela Catania ◽  
Laura Vernuccio ◽  
...  

Background: Recent studies showed that in healthy controls and in aphasic patients, inhibitory trains of repetitive transcranial magnetic stimulation (rTMS) over the right prefrontal cortex can improve phonemic fluency performance, while anodal transcranial direct current stimulation (tDCS) over the left prefrontal cortex can improve performance in naming and semantic fluency tasks. Objective: This study aimed at investigating the effects of cathodal tDCS over the left or the right dorsolateral prefrontal cortex (DLPFC) on verbal fluency tasks (VFT) in patients with mild Alzheimer’s disease (AD). Methods: Forty mild AD patients participated in the study (mean age 73.17±5.61 years). All participants underwent cognitive baseline tasks and a VFT twice. Twenty patients randomly received cathodal tDCS to the left or the right DLPFC, and twenty patients were assigned to a control group in which only the two measures of VFT were taken, without the administration of the tDCS. Results: A significant improvement of performance on the VFT in AD patients was present after tDCS over the right DLPFC (p = 0.001). Instead, no difference was detected between the two VFTs sessions after tDCS over the left DLPFC (p = 0.42). Furthermore, these results cannot be related to task learning effects, since no significant difference was found between the two VFT sessions in the control group (p = 0.73). Conclusion: These data suggest that tDCS over DLPFC can improve VFT performance in AD patients. A hypothesis is that tDCS enhances adaptive patterns of brain activity between functionally connected areas.


Sign in / Sign up

Export Citation Format

Share Document