scholarly journals Beyond the catalyst: how electrode and reactor design determine the product spectrum during electrochemical CO2 reduction

2020 ◽  
Author(s):  
Matthias Wessling

As a remedy to the increasing concentration of greenhouse gases and depleting fossil resources, the electrochemical CO2 reduction closes the carbon cycle and provides an alternative carbon feedstock to the chemical and energy industry. While most contemporary research focuses on the catalyst activity, we emphasize the importance of the reactor design for an energetic efficient (EE) conversion. A design strategy for an electrochemical membrane reactor reducing CO2 to hydrogen, carbon monoxide (CO) and ethylene (C2H4) is developed. We present the stepwise development from an H-cell like setup using full-metal electrodes to a cell with gas diffusion electrodes (GDE) towards high current efficiencies (CE) at high current densities (CD). At 300 mA.cm−2 a CO-CE of 56% for a Ag GDE and a C2H4-CE of 94% for a Cu GDE are measured. The incorporation of the developed GDEs into a zero-gap assembly eliminates ohmic losses and maximizes EE, however the acidic environment of the ion exchange membrane inhibits CO2 reduction. As a compromise a thin liquid buffer layer between cathode and membrane is a prerequisite for a highly active conversion. We demonstrate that industrial relevant CDs with high CEs and EEs can only be achieved by moving beyond today’s research form catalyst development only to an integrated reactor design, which allows to exploit the viable potential of electrochemical CO2 reduction catalysts.

Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 482
Author(s):  
Hilmar Guzmán ◽  
Federica Zammillo ◽  
Daniela Roldán ◽  
Camilla Galletti ◽  
Nunzio Russo ◽  
...  

Electrochemical CO2 reduction is a promising carbon capture and utilisation technology. Herein, a continuous flow gas diffusion electrode (GDE)-cell configuration has been studied to convert CO2 via electrochemical reduction under atmospheric conditions. To this purpose, Cu-based electrocatalysts immobilised on a porous and conductive GDE have been tested. Many system variables have been evaluated to find the most promising conditions able to lead to increased production of CO2 reduction liquid products, specifically: applied potentials, catalyst loading, Nafion content, KHCO3 electrolyte concentration, and the presence of metal oxides, like ZnO or/and Al2O3. In particular, the CO productivity increased at the lowest Nafion content of 15%, leading to syngas with an H2/CO ratio of ~1. Meanwhile, at the highest Nafion content (45%), C2+ products formation has been increased, and the CO selectivity has been decreased by 80%. The reported results revealed that the liquid crossover through the GDE highly impacts CO2 diffusion to the catalyst active sites, thus reducing the CO2 conversion efficiency. Through mathematical modelling, it has been confirmed that the increase of the local pH, coupled to the electrode-wetting, promotes the formation of bicarbonate species that deactivate the catalysts surface, hindering the mechanisms for the C2+ liquid products generation. These results want to shine the spotlight on kinetics and transport limitations, shifting the focus from catalytic activity of materials to other involved factors.


2018 ◽  
Vol 43 (24) ◽  
pp. 11315-11325 ◽  
Author(s):  
Yu Seok Ham ◽  
Myung Jun Kim ◽  
Taeho Lim ◽  
Dong-Kwon Kim ◽  
Soo-Kil Kim ◽  
...  

2020 ◽  
Vol 8 (18) ◽  
pp. 9032-9038 ◽  
Author(s):  
Jinkyu Lim ◽  
Phil Woong Kang ◽  
Sun Seo Jeon ◽  
Hyunjoo Lee

Productivity of formates from electrochemical CO2 reduction was enhanced by using a Sn catalyst with dense tips electrodeposited on a gas diffusion electrode.


2021 ◽  
Author(s):  
Shima Alinejad ◽  
Jonathan Quinson ◽  
Yao Li ◽  
Ying Kong ◽  
Sven Reichenberger ◽  
...  

The lack of a robust and standardized experimental test bed to investigate the performance of catalyst materials for the electrochemical CO2 reduction reaction (ECO2RR) is one of the major challenges in this field of research. To best reproduce and mimic commercially relevant conditions for catalyst screening and testing, gas diffusion electrode (GDE) setups attract a rising attention as an alternative to conventional aqueous-based setups such as the H-cell configuration. In particular a zero-gap design shows promising features for upscaling to the commercial scale. In this study, we develop further our recently introduced zero-gap GDE setup for the CO2RR using an Au electrocatalyst as model system and identify/report the key experimental parameters to control in the catalyst layer preparation in order to optimize the activity and selectivity of the catalyst.


2019 ◽  
Vol 12 (5) ◽  
pp. 1442-1453 ◽  
Author(s):  
Thomas Burdyny ◽  
Wilson A. Smith

The substantial implications of high current densities on the local reaction environment and design of catalysts for electrochemical CO2 reduction are addressed. The presented perspectives also reflect on current practices within the field and offer new opportunities for both future catalyst and system-focused research efforts.


Sign in / Sign up

Export Citation Format

Share Document