Model prediction for constant area, variable pressure drop in orifice plate characteristics in flow system

2019 ◽  
Author(s):  
Chem Int

The effect of density, pressure drop, viscosity and orifice area on the characteristics of fluid flow was examined in this paper. Also studied was the effect on the control pressure change of the constant area variable pressure drop meter as a proportional derivative control. The mathematical model developed to monitor and predict the control of the system is given as P-Po = 7.8/t – 0.06 + Kc +Kd. The change in control pressure decreases with increase in proportional/derivative gain (Kc, Kd) as well as increase in time. The Bernoulli’s principle was applied in describing the design principle, stability analysis and development of mathematic model of a pressure-based flow meter with a constant area, variable pressure drop; using an orifice plate with different fluid flowing through it. The developed formula relates pressure drop with the flow rate of a given fluid passing through the orifice. The formula obtained is then simulated using different fluids. In order to control the flow rate, of these fluid flowing through the model developed was related to a Proportional Derivative control (PD). Thereby getting knowledge on how the PD controller performs with respect to different fluids, with change in pressure, density and area of the pipe/orifice was presented in this paper. Finally information and results on the simulation and how the PD controller functional parameters of proportional gain and derivative gain influence the control system was examined in this research.

2014 ◽  
Vol 699 ◽  
pp. 915-920 ◽  
Author(s):  
Bukhari Manshoor ◽  
Mohd Fahmi Othman ◽  
Izzuddin Zaman ◽  
Zamani Ngali ◽  
Amir Khalid

The plant industry is required to measure flow rate more accurately to meet plant operation and cost accounting objectives. The opposing concern of improving flow meter accuracy is resolved by using flow conditioners. The distance of implementation of flow conditioner upstream of the orifice plate flowmeter is also need to be addressed. Hence, in present study, an analysis of the porosity of fractal flow conditioner towards orifice plate flowmeter’s accuracy and the best distance of fractal flow conditioner upstream of the orifice plate flowmeter was determined. In an experimental work, a different porosity of the fractal flow conditioners were installed with different distance upstream of the orifice plate in conjunction with the different disturbances to assess the effects of these devices on the measurement of the mass flow rate. Data gained for all the plates showed that there is increment of pressure drop and change in discharge coefficient of the orifice with lower β value of fractal flow conditioner. Good comparisons with the previous experimental work demonstrate the fractal flow conditioner can preserve the accuracy of metering up to the level required in the standards.


2021 ◽  
Vol 303 ◽  
pp. 01035
Author(s):  
Lianjun Chen ◽  
Xuekai Jiang ◽  
Guoming Liu ◽  
Xiangfei Cui

In order to explore the pressure change law of mining wet shotcrete in pipes, the rheological model was built based on rheology principle, and the computational formula of rheological parameters of wet shotcrete was deduced with the linear regression. 100 m full-scale pipeline platform of wet shotcrete was designed and built to study the relationship of pressure and other factors including flow rate, water cement ratio, mix proportion, and pipe bends. Results show: pipe pressure increases with the increase in flow rate and declines with the increase in water-cement ratio, the pressure may fluctuate with a high water cement ratio which can cause cement overhydration and bleeding separation. It will be more beneficial to transport materials if the continuous grading and straight pipe were considered. According to the tests of mix proportion 1:1.5:2.25, the pressure drop is 0.032 MPa·m−1 and the bend pressure drop is 1.3 times higher than in the straight line. We also conclude that solid phase pressure is bigger than liquid phase pressure and they both decline along the pipe based on FLUENT simulation. Finally, the formula of on-way resistance used in mine production was deduced.


2018 ◽  
Vol 18 (3/4) ◽  
pp. 353
Author(s):  
Man Chen ◽  
Hongzhi Yang ◽  
Xiaotao Zhang ◽  
Xin Jiang ◽  
Majia Zheng ◽  
...  

2018 ◽  
Vol 18 (3/4) ◽  
pp. 353
Author(s):  
Zhou Zhang ◽  
Majia Zheng ◽  
Xin Jiang ◽  
Man Chen ◽  
Hongzhi Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document