scholarly journals The origin and 3D architecture of a km-scale deep-water scour-fill: example from the Skoorsteenberg Fm., Karoo Basin, South Africa

2021 ◽  
Author(s):  
Larissa Hansen ◽  
Rachel Healy ◽  
Luz Gomis Cartesio ◽  
David Lee ◽  
David Hodgson ◽  
...  

Scours, and scour fields, are common features on the modern seafloor of deep-marine systems, particularly downstream of submarine channels, and in channel-lobe-transitions-zones. High-resolution images of the seafloor have improved the documentation of the large scale, coalescence, and distribution of these scours in deep-marine systems. However, their scale and high aspect ratio mean they can be challenging to identify in outcrop. Here, we document a large-scale, composite erosion surface from the exhumed deep-marine stratigraphy of Unit 5 from the Permian Karoo Basin succession in South Africa, which is interpreted to be present at the end of a submarine channel.This study utilizes 24 sedimentary logs, 2 cored boreholes, and extensive palaeocurrent and thickness data across a 126 km2 study area. Sedimentary facies analysis, thickness variations and correlation panels allowed identification of a lower heterolithic-dominated part (up to 70 m thick) and an upper sandstone-dominated part (10-40 m thick) separated by an extensive erosion surface. The lower part comprises heterolithics with abundant current and sinusoidal ripples, which due to palaeocurrents, thickness trends and adjacent depositional environments is interpreted as the aggradational lobe complex fringes. The base of the upper part comprises 2-3 medium-bedded sandstone beds interpreted as precursor lobes cut by a 3-4 km wide, 1-2 km long, and up to 28 m deep, high aspect ratio (1:100) composite scour surface. The abrupt change from heterolithics to thick-bedded sandstones marks the establishment of a new sediment delivery system, which may have been triggered by an updip channel avulsion. The composite scour and subsequent sandstone fill support a change from erosion- and bypass-dominated flows to depositional flows, which might reflect increasingly sand-rich flows as a new sediment route matured. This study provides a unique outcrop example with 3D stratigraphic control of the record of a new sediment conduit, and development and fill of a large-scale composite scour surface at the channel mouth, providing a rare insight into how scours imaged on seafloor data can be preserved in the rock record.

2021 ◽  
Vol 9 ◽  
Author(s):  
L. A. S. Hansen ◽  
R. S. Healy ◽  
L. Gomis-Cartesio ◽  
D. R. Lee ◽  
D. M. Hodgson ◽  
...  

Scours, and scour fields, are common features on the modern seafloor of deep-marine systems, particularly downstream of submarine channels, and in channel-lobe-transition-zones. High-resolution images of the seafloor have improved the documentation of the large scale, coalescence, and distribution of these scours in deep-marine systems. However, their scale and high aspect ratio mean they can be challenging to identify in outcrop. Here, we document a large-scale, composite erosion surface from the exhumed deep-marine stratigraphy of Unit 5 from the Permian Karoo Basin succession in South Africa, which is interpreted to be present at the end of a submarine channel. This study utilizes 24 sedimentary logs, 2 cored boreholes, and extensive palaeocurrent and thickness data across a 126 km2 study area. Sedimentary facies analysis, thickness variations and correlation panels allowed identification of a lower heterolithic-dominated part (up to 70 m thick) and an upper sandstone-dominated part (10–40 m thick) separated by an extensive erosion surface. The lower part comprises heterolithics with abundant current and sinusoidal ripples, which due to palaeocurrents, thickness trends and adjacent depositional environments is interpreted as the aggradational lobe complex fringes. The base of the upper part comprises 2-3 medium-bedded sandstone beds interpreted as precursor lobes cut by a 3–4 km wide, 1–2 km long, and up to 28 m deep, high aspect ratio (1:100) composite scour surface. The abrupt change from heterolithics to thick-bedded sandstones marks the establishment of a new sediment delivery system, which may have been triggered by an updip channel avulsion. The composite scour and subsequent sandstone fill support a change from erosion- and bypass-dominated flows to depositional flows, which might reflect increasingly sand-rich flows as a new sediment route matured. This study provides a unique outcrop example with 3D stratigraphic control of the record of a new sediment conduit, and development and fill of a large-scale composite scour surface at a channel mouth transition zone, providing a rare insight into how scours imaged on seafloor data can be filled and preserved in the rock record.


2021 ◽  
Vol 13 (1) ◽  
pp. 748-781
Author(s):  
Christopher Baiyegunhi ◽  
Kuiwu Liu

Abstract The stratigraphy of the Ecca Group has been subdivided into the Prince Albert, Whitehill, Collingham, Ripon, and Fort Brown Formations in the Eastern Cape Province, South Africa. In this article, we present detailed stratigraphic and facies analyses of borehole data and road-cut exposures of the Ecca Group along regional roads R67 (Ecca Pass), R344 (Grahamstown-Adelaide), R350 (Kirkwood-Somerset East), and national roads N2 (Grahamstown-Peddie) and N10 (Paterson-Cookhouse). Facies analysis of the Ecca Group in the study area was performed to deduce their depositional environments. Based on the lithological and facies characteristics, the stratigraphy of the Prince Albert, Whitehill, Collingham, and Fort Brown Formations is now subdivided into two informal members each, while the Ripon Formation is subdivided into three members. A total of twelve lithofacies were identified in the Ecca Group and were further grouped into seven distinct facies associations (FAs), namely: Laminated to thin-bedded black-greyish shale and mudstones (FA 1); Laminated black-greyish shale and interbedded chert (FA 2); Mudstone rhythmite and thin beds of tuff alternation (FA 3); Thin to thick-bedded sandstone and mudstone intercalation (FA 4); Medium to thick-bedded dark-grey shale (FA 5); Alternated thin to medium-bedded sandstone and mudstone (FA 6); and Varved mudstone rhythmite and sandstone intercalation (FA 7). The FAs revealed gradually change of sea-level from deep marine (FA 1, FA 2, FA 3 and FA 4, FA 5, and FA 6) to prodelta environment (FA 7). This implies that the main Karoo Basin was gradually filling up with Ecca sediments, resulting in the gradual shallowing up of the water depth of the depositional basin.


Author(s):  
Xiaobo Liao ◽  
Jian Zhuang ◽  
Jiulin Yang ◽  
Lei Cheng ◽  
Qiangqiang Zheng ◽  
...  

2016 ◽  
Vol 28 (7) ◽  
pp. 5308-5314 ◽  
Author(s):  
Yongyun Mao ◽  
Hongwei Yang ◽  
Changyi Hu ◽  
Junmei Guo ◽  
Xianwei Meng ◽  
...  

2003 ◽  
Vol 42 (3) ◽  
pp. 921-924 ◽  
Author(s):  
Xiao-Lin Li ◽  
Jun-Feng Liu ◽  
Ya-Dong Li

Author(s):  
Simon Andrieu ◽  
Nicolas Saspiturry ◽  
Marine Lartigau ◽  
Benoit Issautier ◽  
Paul Angrand ◽  
...  

The Cenomanian to early Santonian interval is usually considered a time of postrifting tectonic quiescence around the northern margins of Iberia that preceded the onset of the Pyrenean convergence by crustal thrusting in the latest Santonian. However, plate kinematic models of the Mesozoic evolution of Iberia poorly constrain the Turonian-Santonian position of Iberia relative to Eurasia. This study reconstructs changes in the sedimentary facies and architecture of the Iberian carbonate platform throughout the Late Cretaceous and sheds new light on the geodynamic evolution of the Iberia-Eurasia relationship at that time. Sixteen outcrop sections were described and 24 sedimentary facies identified that define 5 depositional environments ranging from the basin to the continental setting. From these and previously published field data we reconstruct the evolution of the Pyrenean carbonate platform, on an east-west transect nearly 400 km long, on the basis of 11 short-term depositional sequences and 5 long-term systems tracts. In our interpretation, the Cenomanian and Turonian correspond to a postrift stage during which the European and Iberian margins, together with the deep basin between them, subside gently, as shown by accommodation rates varying from ~15 to 30 m/My in the margins and ~100 to 150 m/My in the basin. The Coniacian and early Santonian are characterized by a large-scale flexural response consisting of (1) uplift of the southern Iberian margin, with negative accommodation rates, karstified surfaces and paleosols, and (2) increasing subsidence rates in the basin and its edges (the northern Iberian margin and eastern Aquitaine platform), with accommodation rates several times greater than during the Turonian. We propose that far-field stress associated with slight northward motion of the Iberia plate led to the incipient large-scale flexural deformation in the Pyrenean domain. The late Santonian and Campanian are an early orogenic stage marked by rapid subsidence throughout the Pyrenean domain, except at its western end. We argue that the initiation of the Pyrenean convergence, usually considered to occur during the latest Santonian, occurred in the Coniacian.


Author(s):  
Christophe Diette ◽  
Tony Arts ◽  
Olivier Sgarzi ◽  
Emmanuel Laroche

The flow behavior and heat transfer were measured in a large scale, high aspect ratio, turbine blade rib-roughened internal cooling channel. The ribs, installed on one wall, were inclined at 90 deg with respect to the main flow direction and generated a blockage of 20%. The rib corners were rounded to take into account manufacturing aspects. The bulk flow Reynolds number was 20,000. Pressure drop and velocity measurements were first conducted. Liquid crystal thermography was applied to quantify the heat transfer, not only along the ribbed and the smooth opposite walls but also on the rib itself. Numerical simulations were conducted with two flow solvers, IGG/FINE (Numeca) and MSD (ONERA) and compared with measurements. They also supported the analysis of the flow behavior. The influence of round-corner versus sharp edge ribs was numerically evaluated with IGG/FINE.


2017 ◽  
Vol 120 (2) ◽  
pp. 293-302 ◽  
Author(s):  
E.M. Bordy ◽  
S. Spelman ◽  
D.I. Cole ◽  
P. Mthembi

Abstract The Lower Permian Pietermaritzburg Formation is a mudrock-dominated, upward-coarsening stratigraphic unit in the lower Ecca Group (Karoo Supergroup) in the northeastern part of the main Karoo Basin of South Africa. The formation extends over most of the KwaZulu-Natal Province, and due to its lithology and the local climate, it is usually poorly exposed; hence the description is mainly based on borehole records. From a measured thickness of about 430 m south of the type area around Pietermaritzburg, the formation thins progressively northwards and pinches out against the Dwyka Group and pre-Karoo basement north of latitude 26° 30' S. This Lower Permian formation is considered a stratigraphic equivalent of the Prince Albert Formation in the southern part of the main Karoo Basin. The Pietermaritzburg Formation only preserves scattered, fragmentary plant fossil and invertebrate trace fossils, which are diagnostic of marine conditions (e.g. Helminthopsis). Based on its sedimentary facies characteristics and ichnofossil assemblages, the unit was probably deposited under low energy conditions on a northerly shallowing marine shelf that initially experienced deepening (during a major Artinskian transgression) and then shallowing in the early Kungurian.


Sign in / Sign up

Export Citation Format

Share Document