Large-scale synthesis of AgNWs with ultra-high aspect ratio above 4000 and their application in conductive thin film

2016 ◽  
Vol 28 (7) ◽  
pp. 5308-5314 ◽  
Author(s):  
Yongyun Mao ◽  
Hongwei Yang ◽  
Changyi Hu ◽  
Junmei Guo ◽  
Xianwei Meng ◽  
...  
2003 ◽  
Vol 42 (3) ◽  
pp. 921-924 ◽  
Author(s):  
Xiao-Lin Li ◽  
Jun-Feng Liu ◽  
Ya-Dong Li

2003 ◽  
Vol 14 (9) ◽  
pp. 1029-1035 ◽  
Author(s):  
A V Melechko ◽  
T E McKnight ◽  
D K Hensley ◽  
M A Guillorn ◽  
A Y Borisevich ◽  
...  

Author(s):  
Xiaobo Liao ◽  
Jian Zhuang ◽  
Jiulin Yang ◽  
Lei Cheng ◽  
Qiangqiang Zheng ◽  
...  

2020 ◽  
Vol 38 (5) ◽  
pp. 053402
Author(s):  
Andrew Simon ◽  
Oscar van der Straten ◽  
Nicholas A. Lanzillo ◽  
Chih-Chao Yang ◽  
Takeshi Nogami ◽  
...  

MRS Advances ◽  
2020 ◽  
Vol 5 (52-53) ◽  
pp. 2727-2735
Author(s):  
Nidhi ◽  
Tashi Nautiyal ◽  
Samaresh Das

AbstractSeveral techniques have been employed for large-scale synthesis of group 10 transition metal dichalcogenides (TMDCs) based on platinum and palladium for nano- and opto-electronic device applications. Nickel Sulphides (NixSy), belonging to group 10 TMDC family, have been widely explored in the field of energy storage devices such as batteries and supercapacitors, etc. and commonly synthesized through the solution process or hydrothermal methods. However, the high-quality thin film growth of NixSy for nanoelectronic applications remains a central challenge. Here, we report the chemical vapor deposition (CVD) growth of NiS2 thin film onto a two-inch SiO2/Si substrate, for the first time. Techniques such as X-ray photoelectron spectroscopy, X-ray Diffraction, Raman Spectroscopy, Scanning Electron Microscopy, have been used to analyse the quality of this CVD grown NiS2 thin film. A high-quality crystalline thin film of thickness up to a few nanometres (~28 nm) of NiS2 has been analysed here. We also fabricated a field-effect device based on NiS2 thin film using interdigitated electrodes by optical lithography. The electrical performance of the fabricated device is characterized at room temperature. On applying the drain voltage from -2 to +2 V, the device shows drain current in the range of 10-9 A before annealing and in the range of 10-6 A after annealing. This, being comparable to that from devices based on MoS2 and other two-dimensional materials, projects CVD grown NiS2 as a good alternative material for nanoelectronic devices.


Sign in / Sign up

Export Citation Format

Share Document