marine systems
Recently Published Documents


TOTAL DOCUMENTS

632
(FIVE YEARS 138)

H-INDEX

59
(FIVE YEARS 7)

Geosciences ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 42
Author(s):  
Elena Romano ◽  
Luisa Bergamin ◽  
Mario Parise

Marine caves are characterized by wide environmental variability for the interaction between marine and continental processes. Their conditions may be defined as extreme for inhabiting organisms due to the enclosed morphology, lack of light, and scarcity of nutrients. Therefore, it is necessary to identify reliable ecological indicators for describing and assessing environmental conditions in these habitats even more than elsewhere. This review aims to provide the state of art related to the application of benthic foraminifera as proxies in the (paleo)ecological characterization of different habitats of marine caves. Special attention was addressed to a research project focused on Mediterranean marine caves with different characteristics, such as extent, morphology, freshwater influence, salinity, sediment type, oxygenation, and organic matter supply. This review aims to illustrate the reliability of foraminifera as an ecological and paleoecological indicator in these habitats. They respond to various environmental conditions with different assemblages corresponding to a very detailed habitat partitioning. Because marine caves may be considered natural laboratories for environmental variability, the results of these studies may be interpreted in the perspective of the global variability to understand the environmental drivers of future changes in marine systems.


2021 ◽  
Vol 156 (A3) ◽  
Author(s):  
V Rumawas ◽  
B E Asbjørnslett

Research shows that more than 80% of accidents at sea were caused by human related factors. Some experts implied that less than adequate design is one significant element that may lead to human errors. There are several ways to discover whether a design has considered human factors, i.e., to refer to the design specification, to consult the designers, to conduct a direct observation through a site visit or through a model, to interview the users, or to look into the system that regulates the design. This paper applied a content analysis methodology to explore how human factors have been covered in the design of marine systems. Various documents such as rules, regulations, design guidelines, standards and other texts have been analysed. The results indicate that there are extensive references that cover human factors in designing ships. They are published with different degrees of enforcement, some are prescriptive and some are obligatory but still optional. The topic is developing very rapidly. A more assertive measure is required from the regulators to endorse human factors into implementation.


2021 ◽  
Vol 288 (1962) ◽  
Author(s):  
Amanda Xuereb ◽  
Quentin Rougemont ◽  
Peter Tiffin ◽  
Huijie Xue ◽  
Megan Phifer-Rixey

As climate change threatens species' persistence, predicting the potential for species to adapt to rapidly changing environments is imperative for the development of effective conservation strategies. Eco-evolutionary individual-based models (IBMs) can be useful tools for achieving this objective. We performed a literature review to identify studies that apply these tools in marine systems. Our survey suggested that this is an emerging area of research fuelled in part by developments in modelling frameworks that allow simulation of increasingly complex ecological, genetic and demographic processes. The studies we identified illustrate the promise of this approach and advance our understanding of the capacity for adaptation to outpace climate change. These studies also identify limitations of current models and opportunities for further development. We discuss three main topics that emerged across studies: (i) effects of genetic architecture and non-genetic responses on adaptive potential; (ii) capacity for gene flow to facilitate rapid adaptation; and (iii) impacts of multiple stressors on persistence. Finally, we demonstrate the approach using simple simulations and provide a framework for users to explore eco-evolutionary IBMs as tools for understanding adaptation in changing seas.


2021 ◽  
Author(s):  
Eivind Hugaas Kolås ◽  
Tore Mo-Bjørkelund ◽  
Ilker Fer

Abstract. A self-contained turbulence instrument from Rockland Scientific was installed on a Light Autonomous Underwater Vehicle (AUV) from OceanScan Marine Systems and Technology Lda. We report on the data quality and discuss limitations of dissipation estimated from two shear probes during a deployment in the Barents Sea in February 2021. The AUV mission lasted for 5 hours, operating at a typical horizontal speed of 1.2 m s−1. The AUV was programmed to find and cross the maximum along-path thermal gradient at 10, 20 and 30 m depths along 4 km transects. Although the AUV vibrations contaminate the shear probe records, the noise is mitigated by removing vibration-induced components from shear spectra using accelerometer signal measured in multiple directions. Dissipation rate estimates in the observed transects varied in the range 1 × 10−8 and 6 × 10−6 W kg−1, with the values from the two orthogonal probes typically in agreement to within a factor of 2. Dissipation estimates from the AUV show good agreement with nearby vertical microstructure profiles obtained from the ship during the transects, indicating that the turbulence measurements from the AUV are reliable for this relatively turbulent environment. However, the lowest reliable dissipation rates are limited to 5 × 10−8 W kg−1, making this setup unfit for use in quiescent environments.


2021 ◽  
Author(s):  
Will A Overholt ◽  
Susan Trumbore ◽  
Xiaomei Xu ◽  
Till L V Bornemann ◽  
Alexander J Probst ◽  
...  

The terrestrial subsurface contains nearly all of Earth's freshwater reserves and harbors upwards of 60% of our planet's total prokaryotic biomass. While genetic surveys suggest these organisms rely on in situ carbon fixation, rather than the translocation of photosynthetically derived organic carbon, corroborating measurements of carbon fixation in the subsurface are absent. Using a novel ultra-low level 14C-labeling technique, we show that in situ carbon fixation rates in a carbonate aquifer reached 10% of the median rates measured in oligotrophic marine surface waters, and were up to six-fold greater than those observed in lower euphotic zone waters where deep chlorophyll levels peak. Empirical carbon fixation rates were substantiated by both nitrification and anammox rate data. Metagenomic analyses revealed a remarkable abundance of putative chemolithoautotrophic members of an uncharacterized order of Nitrospiria - the first representatives of this class expected to fix carbon via the Wood-Ljungdahl pathway. Based on these fixation rates, we extrapolate global primary production in carbonate groundwaters to be 0.11 Pg of carbon per year.


2021 ◽  
Vol 8 (10) ◽  
Author(s):  
Eoghan M. Cunningham ◽  
Amy Mundye ◽  
Louise Kregting ◽  
Jaimie T. A. Dick ◽  
Andrew Crump ◽  
...  

Microplastics are ubiquitous in global marine systems and may have negative impacts on a vast range of species. Recently, microplastics were shown to impair shell selection assessments in hermit crabs, an essential behaviour for their survival. Hermit crabs also engage in ‘rapping’ contests over shells, based on cognitive assessments of shell quality and opponent fighting ability and, hence, are a useful model species for examining the effects of microplastics on fitness-relevant behaviour in marine systems. Here, we investigated how a 5-day microplastic exposure (25 microplastics/litre) affected the dynamics and outcome of 120 staged hermit crab contests. Using a 2 × 2 factorial design, we examined how microplastics (i.e. presence or absence) and contestant role (i.e. attacker or defender) affected various behavioural variables. Significantly higher raps per bout were needed to evict microplastic-treated defenders when attackers were pre-exposed to control conditions (i.e. no plastic). Also, significantly longer durations of rapping bouts were needed to evict control-treated defenders when attackers were pre-exposed to microplastics. We suggest that microplastics impaired defenders' ability to identify resource holding potential and also affected attackers’ rapping strength and intensity during contests. These impacts on animal contests indicate that microplastics have broader deleterious effects on marine biota than currently recognized.


Sign in / Sign up

Export Citation Format

Share Document