karoo basin
Recently Published Documents


TOTAL DOCUMENTS

379
(FIVE YEARS 75)

H-INDEX

41
(FIVE YEARS 7)

2021 ◽  
Vol 9 ◽  
Author(s):  
L. A. S. Hansen ◽  
R. S. Healy ◽  
L. Gomis-Cartesio ◽  
D. R. Lee ◽  
D. M. Hodgson ◽  
...  

Scours, and scour fields, are common features on the modern seafloor of deep-marine systems, particularly downstream of submarine channels, and in channel-lobe-transition-zones. High-resolution images of the seafloor have improved the documentation of the large scale, coalescence, and distribution of these scours in deep-marine systems. However, their scale and high aspect ratio mean they can be challenging to identify in outcrop. Here, we document a large-scale, composite erosion surface from the exhumed deep-marine stratigraphy of Unit 5 from the Permian Karoo Basin succession in South Africa, which is interpreted to be present at the end of a submarine channel. This study utilizes 24 sedimentary logs, 2 cored boreholes, and extensive palaeocurrent and thickness data across a 126 km2 study area. Sedimentary facies analysis, thickness variations and correlation panels allowed identification of a lower heterolithic-dominated part (up to 70 m thick) and an upper sandstone-dominated part (10–40 m thick) separated by an extensive erosion surface. The lower part comprises heterolithics with abundant current and sinusoidal ripples, which due to palaeocurrents, thickness trends and adjacent depositional environments is interpreted as the aggradational lobe complex fringes. The base of the upper part comprises 2-3 medium-bedded sandstone beds interpreted as precursor lobes cut by a 3–4 km wide, 1–2 km long, and up to 28 m deep, high aspect ratio (1:100) composite scour surface. The abrupt change from heterolithics to thick-bedded sandstones marks the establishment of a new sediment delivery system, which may have been triggered by an updip channel avulsion. The composite scour and subsequent sandstone fill support a change from erosion- and bypass-dominated flows to depositional flows, which might reflect increasingly sand-rich flows as a new sediment route matured. This study provides a unique outcrop example with 3D stratigraphic control of the record of a new sediment conduit, and development and fill of a large-scale composite scour surface at a channel mouth transition zone, providing a rare insight into how scours imaged on seafloor data can be filled and preserved in the rock record.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12082
Author(s):  
Mohd Shafi Bhat ◽  
Christen D. Shelton ◽  
Anusuya Chinsamy

Despite its abundance in the Permian fossil record of South Africa, little is known about the life history of Anteosaurus. Here we examine the bone microstructure of multiple skeletal elements of Anteosaurus from the Tapinocephalus Assemblage Zone of the Karoo Basin. The bone histology of Anteosaurus magnificus reveals that the cortex is composed of highly vascularized, uninterrupted fibrolamellar bone tissue surrounding the inner spongy medullary region. However, the histology of two ribs and a previously described femur of another Anteosaurus taxon revealed an interrupted growth pattern with lines of arrested growth and peripheral rest lines occurring in the compacta, indicating periodic pauses in growth possibly linked to the slowing down of growth during maturity. Given that the fibula of the same individual has well-vascularised fibrolamellar bone tissue without any growth marks in the cortex; this suggests variation in skeletal growth. Based on our histological results, three growth dynamic stages are deduced for the genus Anteosaurus: (i) the earliest growth stage is represented by the predominance of highly vascularized, uninterrupted fibrolamellar bone tissue in the inner cortex, which suggests rapid periosteal bone deposition during early ontogeny; (ii) the next stage of growth shows periodic interruptions in the bone deposition as indicated by the deposition of lines of arrested growth; (iii) the third stage shows the development of lamellar bone tissue with rest lines in the peripheral part of the cortex suggesting a slowing down of growth prior to death. Most of the skeletal elements are characterized by thick bone walls, extensive secondary reconstruction and the complete infilling of the medullary cavity. However, the radius and a previously studied femur have open medullary cavities with struts of bony trabeculae. Based on histologic structures and comparisons with extant taxa, it is likely that Anteosaurus may have been more terrestrial as its osteology point towards terrestriality, but it may have occasionally inhabited ephemeral pools like modern semi-aquatic Hippopotamus.


Author(s):  
S.E. Scheiber-Enslin ◽  
M. Manzi ◽  
S.J. Webb

Abstract The Karoo Basin of South Africa covers an area of 700 000 km2 and has been identified as a possible shale gas reserve. Any evaluation of the shale gas potential of the basin must consider the widespread dolerite dykes and sills. These intrusions were emplaced into the Karoo Supergroup and are well dated at around 183 Ma. Their intrusion triggered the explosive releases of gas in the basin, marked on surface by breccia pipes and hydrothermal vents. This outpouring of gas has been proposed as a significant contributor to global climate change. Research into the three-dimensional interconnected structure of these dolerite sills and dykes and their interaction with the hydrocarbon rich layers in the lower part of the Karoo Supergroup has been limited to localized observations of outcrop, magnetic data, legacy seismic data (from the 1970s) and well core. Here we present an interpreted 65 km long higher-resolution 2D seismic reflection profile across the Karoo Basin, approximately 100 km southeast of Trompsburg. These data were collected in the 1990s and at the time deeper structures along the line interpreted. In this study we focus on the top 0.6 to 2 seconds TWT of the data. The seismic line images the interconnected and cross cutting nature of the dolerite dykes and sills along the profile. We also report possible evidence of a gas escape structure (approximately 2.5 km in diameter at surface) emerging near the edge of a dolerite sill in close proximity to the Whitehill Formation, which is the main target for shale gas exploration. This suggests that gas vents in the eastern Karoo Basin close to Lesotho are due to the release of gas from the carbonaceous shales of the Ecca Group. This is similar to breccia pipes mapped on surface in the western part of the Karoo Basin. This seismic section highlights why dolerite sills and dykes must be considered when evaluating the shale gas potential of the Karoo Basin. We propose that better characterization of the Karoo Basin subsurface by seismic and magnetic studies is necessary prior to any efforts to calculate shale gas reserves.


2021 ◽  
Author(s):  
Larissa Hansen ◽  
Rachel Healy ◽  
Luz Gomis Cartesio ◽  
David Lee ◽  
David Hodgson ◽  
...  

Scours, and scour fields, are common features on the modern seafloor of deep-marine systems, particularly downstream of submarine channels, and in channel-lobe-transitions-zones. High-resolution images of the seafloor have improved the documentation of the large scale, coalescence, and distribution of these scours in deep-marine systems. However, their scale and high aspect ratio mean they can be challenging to identify in outcrop. Here, we document a large-scale, composite erosion surface from the exhumed deep-marine stratigraphy of Unit 5 from the Permian Karoo Basin succession in South Africa, which is interpreted to be present at the end of a submarine channel.This study utilizes 24 sedimentary logs, 2 cored boreholes, and extensive palaeocurrent and thickness data across a 126 km2 study area. Sedimentary facies analysis, thickness variations and correlation panels allowed identification of a lower heterolithic-dominated part (up to 70 m thick) and an upper sandstone-dominated part (10-40 m thick) separated by an extensive erosion surface. The lower part comprises heterolithics with abundant current and sinusoidal ripples, which due to palaeocurrents, thickness trends and adjacent depositional environments is interpreted as the aggradational lobe complex fringes. The base of the upper part comprises 2-3 medium-bedded sandstone beds interpreted as precursor lobes cut by a 3-4 km wide, 1-2 km long, and up to 28 m deep, high aspect ratio (1:100) composite scour surface. The abrupt change from heterolithics to thick-bedded sandstones marks the establishment of a new sediment delivery system, which may have been triggered by an updip channel avulsion. The composite scour and subsequent sandstone fill support a change from erosion- and bypass-dominated flows to depositional flows, which might reflect increasingly sand-rich flows as a new sediment route matured. This study provides a unique outcrop example with 3D stratigraphic control of the record of a new sediment conduit, and development and fill of a large-scale composite scour surface at the channel mouth, providing a rare insight into how scours imaged on seafloor data can be preserved in the rock record.


Author(s):  
Robert A. Gastaldo ◽  
Johann Neveling ◽  
John W. Geissman ◽  
Sandra L. Kamo ◽  
Cindy V. Looy

The contact between the Daptocephalus to Lystrosaurus declivis (previously Lystrosaurus) Assemblage Zones (AZs) described from continental deposits of the Karoo Basin was commonly interpreted to represent an extinction crisis associated with the end-Permian mass-extinction event at ca. 251.901 ± 0.024 Ma. This terrestrial extinction model is based on several sections in the Eastern Cape and Free State Provinces of South Africa. Here, new stratigraphic and paleontologic data are presented for the Eastern Cape Province, in geochronologic and magnetostratigraphic context, wherein lithologic and biologic changes are assessed over a physically correlated stratigraphy exceeding 4.5 km in distance. Spatial variation in lithofacies demonstrates the gradational nature of lithostratigraphic boundaries and depositional trends. This pattern is mimicked by the distribution of vertebrates assigned to the Daptocephalus and L. declivis AZs where diagnostic taxa of each co-occur as lateral equivalents in landscapes dominated by a Glossopteris flora. High-precision U-Pb zircon (chemical abrasion-isotope dilution-thermal ionization mass spectrometry) age results indicate maximum Changhsingian depositional dates that can be used as approximate tie points in our stratigraphic framework, which is supported by a magnetic polarity stratigraphy. The coeval nature of diagnostic pre- and post-extinction vertebrate taxa demonstrates that the L. declivis AZ did not replace the Daptocephalus AZ stratigraphically, that a biotic crisis and turnover likely is absent, and a reevaluation is required for the utilization of these biozones here and globally. Based on our data set, we propose a multidisciplinary approach to correlate the classic Upper Permian localities of the Eastern Cape Province with the Free State Province localities, which demonstrates their time-transgressive nature.


Author(s):  
C. Geel ◽  
E.M. Bordy ◽  
S. Nolte

Abstract Permian black shales from the lower Ecca Group of the southern main Karoo Basin (MKB) have a total organic carbon (TOC) of up to ~5 wt% and have been considered primary targets for a potential shale gas exploration in South Africa. This study investigates the influence of shale composition, porosity, pressure (P) and temperatures (T) on their geomechanical properties such as compressive strength and elastic moduli. On average, these lower Ecca Group shales contain a high proportion, ~50 to 70 vol%, of mechanically strong minerals (e.g., quartz, feldspar, pyrite), ~30 to 50 vol% of weak minerals (e.g., clay minerals, organic matter) and ~0 to 50 vol% of intermediate minerals (e.g., carbonates), which have highly variable mechanical strength. Constant strain rate, triaxial deformation tests (at T ≤100°C; P ≤50 MPa) were performed using a Paterson-type high pressure instrument. Results showed that the Prince Albert Formation is the strongest and most brittle unit in the lower Ecca Group in the southern MKB followed by the Collingham and then the Whitehill Formation. Compressive strength and Young’s moduli (E) increase with increasing hard mineral content and decrease with increasing mechanically weak minerals and porosity. On comparison with some international shales, for which compositional and geomechanical data were measured using similar techniques, the lower Ecca Group shales are found to be geomechanically stronger and more brittle. This research provides the foundation for future geomechanical and petrophysical investigations of these Permian Ecca black shales and their assessment as potential unconventional hydrocarbon reservoirs in the MKB.


2021 ◽  
Vol 9 ◽  
Author(s):  
Bruce S. Rubidge ◽  
Michael O. Day ◽  
Julien Benoit

Lanthanostegus is an unusual dicynodont known from only two partial skulls from a single locality near Jansenville in the Eastern Cape Province of South Africa. Although these specimens can be constrained to near the base of the late middle Permian (Guadalupian) Abrahamskraal Formation, their precise age is uncertain as a result of diachroneity of the base of the Formation and the absence, in the Jansenville area, of index taxa to correlate this horizon with the biostratigraphy established in the Western Cape Province. Here, we describe a third skull that we identify as Lanthanostegus, which we recently discovered from a locality north of Laingsburg, on the western side of the main Karoo Basin. This skull reveals morphological details of the palate, occiput, and lower jaw that are not preserved in the described specimens of Lanthanostegus mohoii and will advance understanding of this poorly known dicynodont. This discovery provides the first direct correlation between the lower Abrahamskraal Formation at Jansenville on the eastern side of the basin and the southwestern part of the basin, and suggests that Lanthanostegus occurs in the lowest Tapinocephalus Assemblage Zone (AZ), or possibly to a new assemblage transitional between the Eodicynodon and Tapinocephalus AZs. This supports earlier work proposing that the Eodicynodon AZ is present only on the western side of the Karoo Basin and that the transition from a marine to continental depositional environment occurred later toward the East.


2021 ◽  
Author(s):  
Abraham I Pretorius ◽  
Conrad C Labandeira ◽  
André Nel ◽  
Rose Prevec
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document