scholarly journals Dielectrophoretic Detection of Electrical Property Changes of Stored Human Red Blood Cells

2021 ◽  
Author(s):  
Edwin David Lavi

The ability to transport and store a large human blood inventory for transfusions is an essential requirement for medical institutions. Thus, there is an important need for rapid and low-cost characterization tools for analyzing the properties of human red blood cells (RBCs) while in storage. In this study, we investigate the ability to use dielectrophoresis (DEP) for measuring the storage-induced changes in RBC electrical properties. Fresh human blood was collected, suspended in K2-EDTA anticoagulant and stored in a blood bank refrigerator for a period of 20 days. Cells were removed from storage at 5-day intervals and subjected to a glutaraldehyde crosslinking reaction to “freeze” cells at their ionic equilibrium at that point in time and prevent ion leakage during DEP analysis. The DEP behavior of RBCs was analyzed in a high permittivity DEP buffer using a three-dimensional DEP chip (3DEP) and also compared to measurements taken with a 2D quadrupole electrode array. The DEP analysis confirms that RBC electrical property changes occur during storage and are only discernable with the use of the cell crosslinking reaction above a glutaraldehyde fixation concentration of 1.0 w/v%. In particular, cytoplasm conductivity was observed to decrease by more than 75% while the RBC membrane conductance was observed to increase by more than 1000% over a period of 20 days. These results show that the presented combination of chemical crosslinking and DEP can be used as rapid characterization tool for monitoring electrical properties changes of human red blood cells while subjected to refrigeration in blood bank storage.

1982 ◽  
Vol 96 (1) ◽  
pp. 209-220
Author(s):  
G. M. Hughes ◽  
Y. Kikuchi ◽  
H. Watari

The blood of a carangid fish, the yellowtail (Seriola quinqueradiata) has been studied with particular reference to the deformability properties of the red blood cells. The rate at which blood flows through a Nuclepore filter containing 5 micrometers pores has been determined under the same conditions that have been used with human blood. Marked differences were found in the flow of yellowtail blood which depended on the particular way in which the blood had been sampled. Such differences seem to be due to a sensitivity of fish red blood cells to their environmental conditions. Blood flow through filters is temperature-dependent, the rate increasing with a rise in temperature. Measurements made at 37 degrees C gave values which were similar to those normally obtained for human red blood cells, in spite of their greater dimensions (10.4 × 6.8 × 3.4 micrometers), and nucleated nature. It was also found that the blood flow rate of human blood was slower than that of yellowtail blood when measured at the normal environmental temperatures (15 degrees C) for these fish.


Transfusion ◽  
2018 ◽  
Vol 58 (12) ◽  
pp. 2978-2991 ◽  
Author(s):  
Julie A. Reisz ◽  
Travis Nemkov ◽  
Monika Dzieciatkowska ◽  
Rachel Culp-Hill ◽  
Davide Stefanoni ◽  
...  

1990 ◽  
Vol 265 (27) ◽  
pp. 16035-16038 ◽  
Author(s):  
P Bütikofer ◽  
Z W Lin ◽  
D T Chiu ◽  
B Lubin ◽  
F A Kuypers

Sign in / Sign up

Export Citation Format

Share Document