scholarly journals A Story on the Wave Spectral Properties of Water Hammer

2021 ◽  
Author(s):  
Shiblu Sarker

The prevention of excessive pressure build-up in pipelines requires a thorough understanding of water hammer. Seminal scholars have looked into this phenomena and come up with useful solutions using theoretical techniques. In this study, We propose a power spectral density approach on the pressure wave generated by water hammer in order to improve our understanding of the frequency-domain approach. This approach has the potential to explain some useful properties of the unsteady flow at a given section, attempting to make investigations of the dynamic characteristics of pipelines more effectively. We employ a basic pipe system to mimic the proposed approach based on the data acquired, which yields a lot of relevant physical information for pipeline construction. The proposed method is expected to be useful and efficient in gaining a better understanding of the intricate properties of unsteady flows as well as sound acoustics in a pipe system and their design.

2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
Jan Litvik ◽  
Michal Kuba ◽  
Daniel Benedikovic ◽  
Jozef Dubovan ◽  
Milan Dado

Laser spectral properties are essential to evaluate the performance of optical communication systems. In general, the power spectral density of the phase noise has a crucial impact on spectral properties of the unmodulated laser signal. Here the white Gaussian noise and1/f-noise are taken into the consideration. By utilizing the time-dependent realizations of the instantaneous optical power and the phase simultaneously, it is possible to estimate the power spectral density or alternatively the power spectrum of an unmodulated laser signal shifted to the baseband and thus estimate the laser linewidth. In this work, we report on the theoretical approach to analyse unmodulated real-valued high-frequency stationary random passband signal of laser, followed by presenting the numerical model of the distributed feedback laser to emulate the time-dependent optical power and the instantaneous phase, as two important time domain laser attributes. The laser model is based on numerical solving the rate equations using fourth-order Runge-Kutta method. This way, we show the direct estimation of the power spectral density and the laser linewidth, when time-dependent laser characteristics are known.


2009 ◽  
Vol 2 (1) ◽  
pp. 40-47
Author(s):  
Montasser Tahat ◽  
Hussien Al-Wedyan ◽  
Kudret Demirli ◽  
Saad Mutasher

2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Kivanc Ekici ◽  
Robert E. Kielb ◽  
Kenneth C. Hall

A nonlinear harmonic balance technique for the analysis of aerodynamic asymmetry of unsteady flows in turbomachinery is presented. The present method uses a mixed time-domain/frequency-domain approach that allows one to compute the unsteady aerodynamic response of turbomachinery blades to self-excited vibrations. Traditionally, researchers have investigated the unsteady response of a blade row with the assumption that all the blades in the row are identical. With this assumption the entire wheel can be modeled using complex periodic boundary conditions and a computational grid spanning a single blade passage. In this study, the steady/unsteady aerodynamic asymmetry is modeled using multiple passages. Specifically, the method has been applied to aerodynamically asymmetric flutter problems for a rotor with a symmetry group of 2. The effect of geometric asymmetries on the unsteady aerodynamic response of a blade row is illustrated. For the cases investigated in this paper, the change in the diagonal terms (blade on itself) dominated the change in stability. Very little mode coupling effect caused by the off-diagonal terms was found.


Author(s):  
Benjamin Yen ◽  
Yusuke Hioka

Abstract A method to locate sound sources using an audio recording system mounted on an unmanned aerial vehicle (UAV) is proposed. The method introduces extension algorithms to apply on top of a baseline approach, which performs localisation by estimating the peak signal-to-noise ratio (SNR) response in the time-frequency and angular spectra with the time difference of arrival information. The proposed extensions include a noise reduction and a post-processing algorithm to address the challenges in a UAV setting. The noise reduction algorithm reduces influences of UAV rotor noise on localisation performance, by scaling the SNR response using power spectral density of the UAV rotor noise, estimated using a denoising autoencoder. For the source tracking problem, an angular spectral range restricted peak search and link post-processing algorithm is also proposed to filter out incorrect location estimates along the localisation path. Experimental results show the proposed extensions yielded improvements in locating the target sound source correctly, with a 0.0064–0.175 decrease in mean haversine distance error across various UAV operating scenarios. The proposed method also shows a reduction in unexpected location estimations, with a 0.0037–0.185 decrease in the 0.75 quartile haversine distance error.


Sign in / Sign up

Export Citation Format

Share Document