scholarly journals Microscopic Estimation of Freeway Vehicle Positions Using Mobile Sensors

2020 ◽  
Author(s):  
Noah J. Goodall ◽  
Brian L. Smith ◽  
B. Brian Park

The introduction of mobile sensors, i.e. probe vehicles with GPS-enabled smart phones or connected vehicle technology, will potentially provide more comprehensive information on roadway conditions than conventional point detection alone. Several mobility applications have been proposed that utilize this new vehicle-specific data rather than aggregated speed, density, and flow. Because of bandwidth limitations of cellular and an expected slow deployment of connected vehicles, only a portion of vehicles on the roadway will be able to report their positions at any given time. This paper proposes a novel technique to analyze the behavior of freeway vehicles equipped with GPS receivers and accelerometers to estimate the quantity, locations, and speeds of those vehicles that do not have similar equipment. If an equipped vehicle deviates significantly from a car-following model’s expected behavior, the deviation is assumed to be the result of an interaction with an unequipped vehicle (i.e. an undetectable “ghost” vehicle). This unequipped vehicle is then inserted into a rolling estimation of individual vehicle movements. Because this technique is dependent on vehicles interacting during congestion, a second scenario uses an upstream detector to detect and insert unequipped vehicles at the point of detection, essentially “seeding” the network. An evaluation using the NGSIM US-101 dataset shows realistic vehicle density estimations during and immediately after congestion. Introducing an upstream detector to supply initial locations of unequipped vehicles improves accuracy in free flow conditions, thereby improving the root mean squared error of the number of vehicles within a 120-foot cell from 3.8 vehicles without a detector, to 2.4 vehicles with a detector, as compared to ground truth.

Drones ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 37
Author(s):  
Bingsheng Wei ◽  
Martin Barczyk

We consider the problem of vision-based detection and ranging of a target UAV using the video feed from a monocular camera onboard a pursuer UAV. Our previously published work in this area employed a cascade classifier algorithm to locate the target UAV, which was found to perform poorly in complex background scenes. We thus study the replacement of the cascade classifier algorithm with newer machine learning-based object detection algorithms. Five candidate algorithms are implemented and quantitatively tested in terms of their efficiency (measured as frames per second processing rate), accuracy (measured as the root mean squared error between ground truth and detected location), and consistency (measured as mean average precision) in a variety of flight patterns, backgrounds, and test conditions. Assigning relative weights of 20%, 40% and 40% to these three criteria, we find that when flying over a white background, the top three performers are YOLO v2 (76.73 out of 100), Faster RCNN v2 (63.65 out of 100), and Tiny YOLO (59.50 out of 100), while over a realistic background, the top three performers are Faster RCNN v2 (54.35 out of 100, SSD MobileNet v1 (51.68 out of 100) and SSD Inception v2 (50.72 out of 100), leading us to recommend Faster RCNN v2 as the recommended solution. We then provide a roadmap for further work in integrating the object detector into our vision-based UAV tracking system.


2018 ◽  
Vol 19 (3) ◽  
pp. 787-801 ◽  
Author(s):  
Yuheng Du ◽  
Mashrur Chowdhury ◽  
Mizanur Rahman ◽  
Kakan Dey ◽  
Amy Apon ◽  
...  

2018 ◽  
Vol 23 (1) ◽  
pp. 12-27 ◽  
Author(s):  
Kamonthep Tiaprasert ◽  
Yunlong Zhang ◽  
Xin Ye

2010 ◽  
Vol 1 (4) ◽  
pp. 17-45
Author(s):  
Antons Rebguns ◽  
Diana F. Spears ◽  
Richard Anderson-Sprecher ◽  
Aleksey Kletsov

This paper presents a novel theoretical framework for swarms of agents. Before deploying a swarm for a task, it is advantageous to predict whether a desired percentage of the swarm will succeed. The authors present a framework that uses a small group of expendable “scout” agents to predict the success probability of the entire swarm, thereby preventing many agent losses. The scouts apply one of two formulas to predict – the standard Bernoulli trials formula or the new Bayesian formula. For experimental evaluation, the framework is applied to simulated agents navigating around obstacles to reach a goal location. Extensive experimental results compare the mean-squared error of the predictions of both formulas with ground truth, under varying circumstances. Results indicate the accuracy and robustness of the Bayesian approach. The framework also yields an intriguing result, namely, that both formulas usually predict better in the presence of (Lennard-Jones) inter-agent forces than when their independence assumptions hold.


Author(s):  
Jing-Quan Li ◽  
Kun Zhou ◽  
Steven E. Shladover ◽  
Alexander Skabardonis

Sign in / Sign up

Export Citation Format

Share Document