scholarly journals Switching Angles Optimization of Cascaded Multilevel Inverter with Newton-Raphson Methhod

2018 ◽  
Author(s):  
Asnil ◽  
krismadinata ◽  
Irma Husnaini ◽  
Syahril

This paper recounts an approach to optrmize the switching angles or single-phase live-level cascaded H-bridgc multilevel inverter. Optimized Harmonic Elimination Stepped Waveform (OHESW) technique was engaged to enhance the output waveform quality. Newtcn-Raphson method is employed to determine the switching angles for the inverter which eliminates specified higher order harmonics while maintaining the required fundamental voltage. Computation resulting from the optimized switching angle was simulated Its results indicated the proposed method's effectiveness

Author(s):  
Wahidah Abd Halim ◽  
Tengku Noor Ariana Tengku Azam ◽  
Komathi Applasamy ◽  
Auzani Jidin

<span lang="EN-US">Multilevel inverters are emerging as the new breed of power converter options for high power applications. They typically synthesis the staircase voltage waveform (from several dc sources) which reduced harmonic content. This paper presents a simple selective harmonic elimination (SHE) modulation for single-phase cascaded H-bridge (CHB) multilevel inverter. The optimum switching angle of the transcendental equations describing the fundamental and harmonic components is solved by means of the Newton-Raphson (NR) method. The proposed SHE scheme is performed through simulation using MATLAB/Simulink. This simulation results are then verified through experiment using Altera DE0-Nano field-programmable gate array (FPGA). The proposed SHE is efficient in eliminating the lowest-order harmonics and producing a higher quality output waveform with a better harmonic profile.  </span>


Author(s):  
Taha Ahmed Hussein

<p>Selective harmonic elimination technique SHE is adopted in this work to reduce the harmonic contents in single phase cascaded multilevel inverter. The firing instants for the electronic switches MOSFETs in the inverter are calculated off line for five level to thirteen level inverter. An Arduino microcontroller is programmed to cope with different topologies of the multilevel inverter. The implemented multi-level (MLI) inverter results are compared with Simulink simulation program and are found very close to each other. SHE technique works at system frequency (50 Hz or 60 Hz) and the switching losses are very small. The sinusoidal pulse width modulation SPWM requires a carrier frequency not less 20 times the system frequency so SHE approach is found to be superior compared with SPWM. Also, SHE technique shows significant reduction in THD as the number of levels increased. Results for the output voltages and currents along with their frequency spectrum are shown and compared with traditional SPWM.</p>


2021 ◽  
Author(s):  
Baharuddin Ismail ◽  
Muzamir Isa ◽  
M. Z. Aikhsan ◽  
M. N. K. H. Rohani ◽  
C. L. Wooi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document