scholarly journals Univariate Credibility as a Boundary-Value Problem, A Symbolic Green’s Function Method (Regular Case)

2017 ◽  
Author(s):  
Agah D. Garnadi ◽  
Sri Nurdiati ◽  
Windiani Erliana

Current formulas in credibility theory often calculate net premium as a weighted sum of the average experience of the policyholder and the average experience of the entire collection of policyholders. Because these formulas are linear, they are easy to use. Another advantage of linear formulas is that the estimate changes a fixed amount per change in claim experience, if an insurer uses which a formal, then the policyholder can predict the change in premium. In a series of writing, Young(1997,1998,2000) apply decision theory to develop a credibility formula that minimizes a loss function that is linear combination of a squared-error term and a second-derivative term or first order term. This loss function as a variational forms, is equivalent to fourth order or second order linear differential equation, respectively. This allows us for evaluation to Green's function computation via symbolic calculation to compute details of Green's function to obtain the solution.

2021 ◽  
Vol 6 (11) ◽  
pp. 12583-12598
Author(s):  
Limin Guo ◽  
◽  
Lishan Liu ◽  
Ying Wang ◽  
◽  
...  

<abstract><p>In this paper, the maximal and minimal iterative positive solutions are investigated for a singular Hadamard fractional differential equation boundary value problem with a boundary condition involving values at infinite number of points. Green's function is deduced and some properties of Green's function are given. Based upon these properties, iterative schemes are established for approximating the maximal and minimal positive solutions.</p></abstract>


2011 ◽  
Vol 16 (3) ◽  
pp. 401-417 ◽  
Author(s):  
Svetlana Roman

In this paper, we investigate the m-order linear ordinary differential equation with m linearly independent additional conditions. We have found the solution to this problem and give the formula and the existence condition of Green's function. We compare two Green's functions for two such problems with different additional conditions and apply these results to the problems with nonlocal boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document