scholarly journals Semantic Knowledge Constrains the Processing of Serial Order Information in Working Memory

2021 ◽  
Author(s):  
Benjamin Kowialiewski ◽  
Simon Gorin ◽  
Steve Majerus

Long-term memory knowledge is considered to impact short-term maintenance of item information in working memory, as opposed to short-term maintenance of serial order information. Evidence supporting an impact of semantic knowledge on serial order maintenance remains weak. In the present study, we demonstrate that semantic knowledge can impact the processing of serial order information in a robust manner. Experiment 1 manipulated semantic relatedness effect by using semantic categories presented in subgroups of items (leaf – tree – branch – cloud – sky – rain). This semantic grouping manipulation was compared to a temporal grouping manipulation whose impact on the processing of serial order information is well-established. Both the semantic and temporal grouping manipulations constrained the occurrence of serial order errors in a robust manner: when migrating to a non-target serial position, items tended to do so most of the time toward the position of a semantically related item or within the same temporal group. Critically, this impact of semantic knowledge on the pattern of migration errors was not observed anymore in Experiment 2, in which we broke-up the semantic groups, by presenting the semantically related items an interleaved fashion (leaf – cloud – tree – sky – branch – rain). Both semantic and temporal grouping factors may reflect a general mechanism through which information is represented hierarchically. Alternatively, both factors could result from the syntactic and/or semantic regularities that naturally structure linguistic information. These results support models considering direct interactions between serial order and linguistic components of WM.

2019 ◽  
Vol 30 (5) ◽  
pp. 2997-3014 ◽  
Author(s):  
Benjamin Kowialiewski ◽  
Laurens Van Calster ◽  
Lucie Attout ◽  
Christophe Phillips ◽  
Steve Majerus

Abstract An influential theoretical account of working memory (WM) considers that WM is based on direct activation of long-term memory knowledge. While there is empirical support for this position in the visual WM domain, direct evidence is scarce in the verbal WM domain. This question is critical for models of verbal WM, as the question of whether short-term maintenance of verbal information relies on direct activation within the long-term linguistic knowledge base or not is still debated. In this study, we examined the extent to which short-term maintenance of lexico-semantic knowledge relies on neural activation patterns in linguistic cortices, and this by using a fast encoding running span task for word and nonword stimuli minimizing strategic encoding mechanisms. Multivariate analyses showed specific neural patterns for the encoding and maintenance of word versus nonword stimuli. These patterns were not detectable anymore when participants were instructed to stop maintaining the memoranda. The patterns involved specific regions within the dorsal and ventral pathways, which are considered to support phonological and semantic processing to various degrees. This study provides novel evidence for a role of linguistic cortices in the representation of long-term memory linguistic knowledge during WM processing.


2016 ◽  
Vol 39 ◽  
Author(s):  
Mary C. Potter

AbstractRapid serial visual presentation (RSVP) of words or pictured scenes provides evidence for a large-capacity conceptual short-term memory (CSTM) that momentarily provides rich associated material from long-term memory, permitting rapid chunking (Potter 1993; 2009; 2012). In perception of scenes as well as language comprehension, we make use of knowledge that briefly exceeds the supposed limits of working memory.


Author(s):  
Stoo Sepp ◽  
Steven J. Howard ◽  
Sharon Tindall-Ford ◽  
Shirley Agostinho ◽  
Fred Paas

In 1956, Miller first reported on a capacity limitation in the amount of information the human brain can process, which was thought to be seven plus or minus two items. The system of memory used to process information for immediate use was coined “working memory” by Miller, Galanter, and Pribram in 1960. In 1968, Atkinson and Shiffrin proposed their multistore model of memory, which theorized that the memory system was separated into short-term memory, long-term memory, and the sensory register, the latter of which temporarily holds and forwards information from sensory inputs to short term-memory for processing. Baddeley and Hitch built upon the concept of multiple stores, leading to the development of the multicomponent model of working memory in 1974, which described two stores devoted to the processing of visuospatial and auditory information, both coordinated by a central executive system. Later, Cowan’s theorizing focused on attentional factors in the effortful and effortless activation and maintenance of information in working memory. In 1988, Cowan published his model—the scope and control of attention model. In contrast, since the early 2000s Engle has investigated working memory capacity through the lens of his individual differences model, which does not seek to quantify capacity in the same way as Miller or Cowan. Instead, this model describes working memory capacity as the interplay between primary memory (working memory), the control of attention, and secondary memory (long-term memory). This affords the opportunity to focus on individual differences in working memory capacity and extend theorizing beyond storage to the manipulation of complex information. These models and advancements have made significant contributions to understandings of learning and cognition, informing educational research and practice in particular. Emerging areas of inquiry include investigating use of gestures to support working memory processing, leveraging working memory measures as a means to target instructional strategies for individual learners, and working memory training. Given that working memory is still debated, and not yet fully understood, researchers continue to investigate its nature, its role in learning and development, and its implications for educational curricula, pedagogy, and practice.


2019 ◽  
Author(s):  
Evan Nathaniel Lintz ◽  
Matthew Johnson

Researchers have investigated “refreshing” of items in working memory (WM) as ameans of preserving them, while concurrently, other studies have examined “removal” of items from WM that are irrelevant. However, it is unclear whether refreshing and removal in WM truly represent different processes, or if participants, in an effort to avoid the to-be-removed items, simply refresh alternative items. We conducted two experiments to test whether these putative processes can be distinguished from one another. Participants were presented with sets of three words and then cued to either refresh one item or remove two items from WM, followed by a lexical decision probe containing either one of the just-seen words or a non-word. In Experiment 1, all probes were valid and in Experiment 2, probes were occasionally invalid (the probed word was one of the removed/non-refreshed items). In both experiments, participants also received a subsequent surprise long-term memory test. Results from both experiments suggested the expected advantages for refreshed (or non-removed) items in both short-term response time and long-term recognition, but no differences between refresh and remove instructions that would suggest a fundamental difference in processes. Thus, we argue that a functional distinction between refreshing and removal may not be necessary, and propose that both of these putative processes could potentially be subsumed under an overarching conceptual perspective based on the flexible reallocation of mental or reflective attention.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pekka Lahti-Nuuttila ◽  
Elisabet Service ◽  
Sini Smolander ◽  
Sari Kunnari ◽  
Eva Arkkila ◽  
...  

Previous studies of verbal short-term memory (STM) indicate that STM for serial order may be linked to language development and developmental language disorder (DLD). To clarify whether a domain-general mechanism is impaired in DLD, we studied the relations between age, non-verbal serial STM, and language competence (expressive language, receptive language, and language reasoning). We hypothesized that non-verbal serial STM differences between groups of children with DLD and typically developing (TD) children are linked to their language acquisition differences. Fifty-one children with DLD and sixty-six TD children participated as part of the HelSLI project in this cross-sectional study. The children were 4–6-year-old monolingual native Finnish speakers. They completed several tests of language and cognitive functioning, as well as new game-like tests of visual and auditory non-verbal serial STM. We used regression analyses to examine how serial STM moderates the effect of age on language. A non-verbal composite measure of serial visual and auditory STM moderated cross-sectional development of receptive language in the children with DLD. This moderation was not observed in the TD children. However, we found more rapid cross-sectional development of non-verbal serial STM in the TD children than in the children with DLD. The results suggest that children with DLD may be more likely to have compromised general serial STM processing and that superior non-verbal serial STM may be associated with better language acquisition in children with DLD.


2020 ◽  
Author(s):  
Benjamin Kowialiewski ◽  
Sophie Portrat ◽  
Benoit Lemaire

It is now firmly established that long-term memory knowledge, such as semantic knowledge, supports the temporary maintenance of verbal information in Working Memory (WM). This support from semantic knowledge is well-explained by models assuming that verbal items are directly activated in long-term memory, and that this activation provides the representational basis for WM maintenance. However, the exact mechanisms underlying semantic influence on WM performance remain poorly understood. We manipulated the presence of between-item semantic relatedness in an immediate serial recall task, by mixing triplets composed of semantically related and unrelated items (e.g. leaf – tree – branch – wall – beer – dog; hand – father – truck – cloud – sky – rain). Compared to unrelated items, related items were better recalled, as had been classically observed. Critically, semantic relatedness also impacted WM maintenance in a complex manner, as observed by the presence of proactive benefit effects on subsequent unrelated items, and the absence of retroactive effects. The complexity of these interactions is well-captured by TBRS*-S, a decay-based computational architecture in which the activation occurring in long-term memory is described. The present study suggests that semantic knowledge can be used to free up WM resources that can be reallocated for maintenance purposes, and supports models postulating that long-term memory knowledge constrains WM maintenance processes.


2003 ◽  
Vol 26 (6) ◽  
pp. 760-769
Author(s):  
Daniel S. Ruchkin ◽  
Jordan Grafman ◽  
Katherine Cameron ◽  
Rita S. Berndt

The goal of our target article is to establish that electrophysiological data constrain models of short-term memory retention operations to schemes in which activated long-term memory is its representational basis. The temporary stores correspond to neural circuits involved in the perception and subsequent processing of the relevant information, and do not involve specialized neural circuits dedicated to the temporary holding of information outside of those embedded in long-term memory. The commentaries ranged from general agreement with the view that short-term memory stores correspond to activated long-term memory (e.g., Abry, Sato, Schwartz, Loevenbruck & Cathiard [Abry etal.], Cowan, Fuster, Grote, Hickok & Buchsbaum, Keenan, Hyönä & Kaakinen [Keenan et al.], Martin, Morra), to taking a definite exception to this view (e.g., Baddeley, Düzel, Logie & Della Sala, Kroger, Majerus, Van der Linden, Colette & Salmon [Majerus et al.], Vallar).


2021 ◽  
pp. 174702182110308
Author(s):  
Dominic Guitard ◽  
Jean Saint-Aubin ◽  
Nelson Cowan

One commonly acknowledged role of working memory is to set up conditions for new learning. Yet, it has long been understood that there is not a perfect correspondence between conditions leading to good immediate recall from working memory and conditions leading to good delayed recall from long-term memory. Here, in six experiments, we investigated the relation between grouping effects in immediate and delayed reconstruction of order for word lists. There has been a striking absence of tests of grouping effects in long-term memory. In the first four experiments, items within groups are presented concurrently, which encourages associations between items in a group. Despite that presumably favorable situation for group learning, in Experiments 1 and 2 we found effects of grouping only in immediate order reconstruction and not in delayed reconstruction. When more processing time was allowed (Experiments 3 & 4), grouping effects in both immediate and delayed order reconstruction were obtained. Experiment 5 showed that, with items presented one at a time, but with roughly the same amount of processing time and spatial separation as the previous two experiments, grouping effects were obtained neither in immediate order reconstruction nor in delayed reconstruction. However, in Experiment 6 with a more salient manipulation of grouping, effects of grouping were obtained in immediate order reconstruction, but not in delayed reconstruction. In sum, we demonstrated for the first time that there are mechanisms of temporal grouping that assist working memory but are relatively ineffective for long-term learning, in contrast to more effective, concurrent presentation.


Sign in / Sign up

Export Citation Format

Share Document