scholarly journals Spatial Working Memory Capacity Predicts Bias in Estimates of Location

2016 ◽  
Author(s):  
David Landy ◽  
L. Elizabeth Crawford ◽  
Timothy A. Salthouse

Spatial memory research has attributed systematic bias in location estimates to a combination of a noisy memory trace with a prior structure that people impose on the space. Little is known about intra-individual stability and inter-individual variation in these patterns of bias. In the current work we align recent empirical and theoretical work on working memory capacity limits and spatial memory bias to generate the prediction that those with lower working memory capacity will show greater bias in memory of the location of a single item. Reanalyzing data from a large study of cognitive aging, we find support for this prediction. Fitting separate models to individuals’ data revealed a surprising variety of strategies. Some were consistent with Bayesian models of spatial category use, however roughly half of participants biased estimates outward in a way not predicted by current models and others seemed to combine these strategies. These analyses highlight the importance of studying individuals when developing general models of cognition.

Author(s):  
Nelson Cowan ◽  
Candice C. Morey ◽  
Zhijian Chen ◽  
Amanda L. Gilchrist ◽  
J. Scott Saults

2012 ◽  
Vol 3 ◽  
Author(s):  
Kathryn L. Mills ◽  
Deepti Bathula ◽  
Taciana G. Costa Dias ◽  
Swathi P. Iyer ◽  
Michelle C. Fenesy ◽  
...  

2017 ◽  
Vol 17 (10) ◽  
pp. 109
Author(s):  
Jason Scimeca ◽  
Jacob Miller ◽  
Mark D'Esposito

2019 ◽  
Vol 5 (2) ◽  
pp. 189-219
Author(s):  
Paula Jane Hubber ◽  
Camilla Gilmore ◽  
Lucy Cragg

Previous research has demonstrated that working memory performance is linked to mathematics achievement. Most previous studies have involved children and arithmetic rather than more advanced forms of mathematics. This study compared the performance of groups of adult mathematics and humanities students. Experiment 1 employed verbal and visuo-spatial working memory span tasks using a novel face-matching processing element. Results showed that mathematics students had greater working memory capacity in the visuo-spatial domain only. Experiment 2 replicated this and demonstrated that neither visuo-spatial short-term memory nor endogenous spatial attention explained the visuo-spatial working memory differences. Experiment 3 used working memory span tasks with more traditional verbal or visuo-spatial processing elements to explore the effect of processing type. In this study mathematics students showed superior visuo-spatial working memory capacity only when the processing involved had a comparatively low level of central executive involvement. Both visuo-spatial working memory capacity and general visuo-spatial skills predicted mathematics achievement.


2019 ◽  
Vol 2 (1) ◽  
pp. 40 ◽  
Author(s):  
Klaus Oberauer

2020 ◽  
Vol 3 (2) ◽  
pp. 97
Author(s):  
Johana Aprilia ◽  
Frieda Maryam Mangunsong

Children with hearing impairment or deafness experience cognitive function delays but not limited visual-spatial working memory, which is commonly used to solve mathematical problems. Previous studies have discovered that visual or spatial working memory in such children is different because of the communication methods that rely on vision. This study explores the visual-spatial working memory in children with deafness by measuring the memory of 70 elementary school children with deafness and identifying their communication methods through questionnaires. The questionnaires were completed by the children’s parents. The visual-spatial working memory measurement utilized the Lion Game through Zoom meetings. Consequently, it was found that there was no significant difference in visual-spatial working memory capacity in children with hearing impairment using oral, total communication, and sign language. It can be argued that in children with deafness, their visual-spatial working memory span with oral, total, and sign language communication methods have still not reached the maximum point. The use of hearing aids, popular among such children also did not significantly enhance visual-spatial working memory capacity. This research recommends parents be more attentive not only toward the communication methods of children with deafness but also to their cognitive function development. 


2020 ◽  
Vol 10 (8) ◽  
pp. 552
Author(s):  
Joaquín Castillo Escamilla ◽  
José Javier Fernández Castro ◽  
Shishir Baliyan ◽  
Juan José Ortells-Pareja ◽  
Juan José Ortells Rodríguez ◽  
...  

Traditionally, the medial temporal lobe has been considered a key brain region for spatial memory. Nevertheless, executive functions, such as working memory, also play an important role in complex behaviors, such as spatial navigation. Thus, the main goal of this study is to clarify the relationship between working memory capacity and spatial memory performance. Spatial memory was assessed using a virtual reality-based procedure, the Boxes Room task, and the visual working memory with the computer-based Change Localization Task. One hundred and twenty-three (n = 123) participants took part in this study. Analysis of Covariance (ANCOVA) revealed a statistically significant relationship between working memory capacity and spatial abilities. Thereafter, two subgroups n = 60, were formed according to their performance in the working memory task (1st and 4th quartiles, n = 30 each). Results demonstrate that participants with high working memory capacity committed fewer mistakes in the spatial task compared to the low working memory capacity group. Both groups improved their performance through repeated trials of the spatial task, thus showing that they could learn spatial layouts independent of their working memory capacity. In conclusion, these findings support that spatial memory performance is directly related to working memory skills. This could be relevant for spatial memory assessment in brain lesioned patients.


2019 ◽  
Author(s):  
Blake L. Elliott ◽  
Samuel M. McClure ◽  
Gene Arnold Brewer

Prioritized encoding and retrieval of valuable information is an essential component of human memory due to capacity limits. Individual differences in value-directed encoding may derive from variability in stimulus valuation, memory encoding, or from strategic abilities related to maintenance in working memory. We collected multiple cognitive ability measures to test whether variation in episodic memory, working memory capacity, or both predict differences in value-directed remembering among a large sample of participants (n=205). Confirmatory factor analysis and structural equation modeling was used to assess the contributions of episodic and working memory to value sensitivity in value-directed remembering tasks. Episodic memory ability, but not working memory capacity, was predictive of value-directed remembering. These results suggest that cognitive processes may be differentially related to value-based memory encoding.


Sign in / Sign up

Export Citation Format

Share Document