scholarly journals Mental Number Representations are Spatially Mapped both by Their Magnitudes and Ordinal Positions

2021 ◽  
Author(s):  
Nadine Koch ◽  
Julia Huber ◽  
Johannes Lohmann ◽  
Krzysztof Cipora ◽  
Martin V. Butz ◽  
...  

One of the most fundamental effects used to investigate number representations is the Spatial-Numerical Association of Response Codes (SNARC) effect showing that responses to small/large numbers are faster with the left/right hand, respectively. However, in recent years, it is hotly debated whether the SNARC effect is based upon cardinal representation of number magnitude or ordinal representation of number sequence in working memory. However, one problem is that evidence comes from different paradigms, e.g., evidence for ordinal sequences comes usually from experiments, where ordinal sequences have to be learnt and it has been ar-gued that this secondary task triggers the effect. Therefore, in this preregistered study we em-ployed a SNARC task, without secondary ordinal sequence learning, in which we can dissociate ordinal and magnitude accounts by careful manipulation of experimental stimulus sets and com-pare magnitude and ordinal models. The results indicate that even though the observed data is better accounted for by the magnitude model, the ordinal position seems to matter as well. Thus, it appears that the mechanisms described by both accounts play a significant role when mental numbers are temporarily mapped onto space even when no ordinal learning is involved.

2008 ◽  
Vol 61 (3) ◽  
pp. 444-458 ◽  
Author(s):  
Jolien De Brauwer ◽  
Wouter Duyck ◽  
Marc Brysbaert

We present new evidence that word translation involves semantic mediation. It has been shown that participants react faster to small numbers with their left hand and to large numbers with their right hand. This SNARC (spatial-numerical association of response codes) effect is due to the fact that in Western cultures the semantic number line is oriented from left (small) to right (large). We obtained a SNARC effect when participants had to indicate the parity of second-language (L2) number words, but not when they had to indicate whether L2 number words contained a particular sound. Crucially, the SNARC effect was also obtained in a translation verification task, indicating that this task involved the activation of number magnitude.


2020 ◽  
Vol 3 (2) ◽  
pp. 143-162 ◽  
Author(s):  
Lincoln J. Colling ◽  
Dénes Szűcs ◽  
Damiano De Marco ◽  
Krzysztof Cipora ◽  
Rolf Ulrich ◽  
...  

The attentional spatial-numerical association of response codes (Att-SNARC) effect (Fischer, Castel, Dodd, & Pratt, 2003)—the finding that participants are quicker to detect left-side targets when the targets are preceded by small numbers and quicker to detect right-side targets when they are preceded by large numbers—has been used as evidence for embodied number representations and to support strong claims about the link between number and space (e.g., a mental number line). We attempted to replicate Experiment 2 of Fischer et al. by collecting data from 1,105 participants at 17 labs. Across all 1,105 participants and four interstimulus-interval conditions, the proportion of times the effect we observed was positive (i.e., directionally consistent with the original effect) was .50. Further, the effects we observed both within and across labs were minuscule and incompatible with those observed by Fischer et al. Given this, we conclude that we failed to replicate the effect reported by Fischer et al. In addition, our analysis of several participant-level moderators (finger-counting habits, reading and writing direction, handedness, and mathematics fluency and mathematics anxiety) revealed no substantial moderating effects. Our results indicate that the Att-SNARC effect cannot be used as evidence to support strong claims about the link between number and space.


Author(s):  
Wim De Neys ◽  
Niki Verschueren

Abstract. The Monty Hall Dilemma (MHD) is an intriguing example of the discrepancy between people’s intuitions and normative reasoning. This study examines whether the notorious difficulty of the MHD is associated with limitations in working memory resources. Experiment 1 and 2 examined the link between MHD reasoning and working memory capacity. Experiment 3 tested the role of working memory experimentally by burdening the executive resources with a secondary task. Results showed that participants who solved the MHD correctly had a significantly higher working memory capacity than erroneous responders. Correct responding also decreased under secondary task load. Findings indicate that working memory capacity plays a key role in overcoming salient intuitions and selecting the correct switching response during MHD reasoning.


2019 ◽  
Vol 5 (1) ◽  
pp. 38-54
Author(s):  
Tianwei Gong ◽  
Baichen Li ◽  
Limei Teng ◽  
Zijun Zhou ◽  
Xuefei Gao ◽  
...  

Research on adults' numerical abilities suggests that number representations are spatially oriented. This association of numbers with spatial response is referred to as the SNARC (i.e., spatial–numerical association of response codes) effect. The notation-independence hypothesis of numeric processing predicts that the SNARC effect will not vary with notation (e.g., Arabic vs. number word). To test such assumption, the current study introduced an adaptive experimental procedure based on a simple perceptual orientation task that can automatically smooth out the mean reaction time difference between Arabic digits and traditional Chinese number. We found that the SNARC effect interacted with notation, showing a SNARC effect for Arabic digits, but not for verbal number words. The results of this study challenged the commonly held view that notation does not affect numerical processes associated with spatial representations. We introduced a parallel model to explain the notation-dependent SNARC effect in the perceptual orientation judgment task.


2018 ◽  
Vol 71 (6) ◽  
pp. 1440-1456 ◽  
Author(s):  
Phillip L Morgan ◽  
Craig Williams ◽  
Fay M Ings ◽  
Nia C Hughes

Two experiments examined if exposure to emotionally valent image-based secondary tasks introduced at different points of a free recall working memory (WM) task impair memory performance. Images from the International Affective Picture System (IAPS) varied in the degree of negative or positive valance (mild, moderate, strong) and were positioned at low, moderate and high WM load points with participants rating them based upon perceived valence. As predicted, and based on previous research and theory, the higher the degree of negative (Experiment 1) and positive (Experiment 2) valence and the higher the WM load when a secondary task was introduced, the greater the impairment to recall. Secondary task images with strong negative valance were more disruptive than negative images with lower valence at moderate and high WM load task points involving encoding and/or rehearsal of primary task words (Experiment 1). This was not the case for secondary tasks involving positive images (Experiment 2), although participant valence ratings for positive IAPS images classified as moderate and strong were in fact very similar. Implications are discussed in relation to research and theory on task interruption and attentional narrowing and literature concerning the effects of emotive stimuli on cognition.


2021 ◽  
Author(s):  
Ilenia Paparella ◽  
Liuba Papeo

Working memory (WM) uses knowledge and relations to organize and store multiple individual items in a smaller set of structured units, or chunks. We investigated whether a crowd of individuals that exceeds the WM is retained and, therefore, recognized more accurately, if individuals are represented as interacting with one another –i.e., they form social chunks. Further, we asked what counts as a social chunk in WM: two individuals involved in a meaningful interaction or just spatially close and face-to-face. In three experiments with a delayed change-detection task, participants had to report whether a probe-array was the same of, or different from a sample-array featuring two or three dyads of bodies either face-to-face (facing array) or back-to-back (non-facing array). In Experiment 1, where facing dyads depicted coherent, meaningful interactions, participants were more accurate to detect changes in facing (vs. non-facing) arrays. A similar advantage was found in Experiment 2, even though facing dyads depicted no meaningful interaction. In Experiment 3, we introduced a secondary task (verbal shadowing) to increase WM load. This manipulation abolished the advantage of facing (vs. non-facing) arrays, only when facing dyads depicted no meaningful interactions. These results show that WM uses representation of interaction to chunk crowds in social groups. The mere facingness of bodies is sufficient on its own to evoke representation of interaction, thus defining a social chunk in WM; although the lack of semantic anchor makes chunking fainter and more susceptible to interference of a secondary task.


2012 ◽  
Vol 25 (0) ◽  
pp. 58
Author(s):  
Katrina Quinn ◽  
Francia Acosta-Saltos ◽  
Jan W. de Fockert ◽  
Charles Spence ◽  
Andrew J. Bremner

Information about where our hands are arises from different sensory modalities; chiefly proprioception and vision. These inputs differ in variability from situation to situation (or task to task). According to the idea of ‘optimal integration’, the information provided by different sources is combined in proportion to their relative reliabilities, thus maximizing the reliability of the combined estimate. It is uncertain whether optimal multisensory integration of multisensory contributions to limb position requires executive resources. If so, then it should be possible to observe effects of secondary task performance and/or working memory load (WML) on the relative weighting of the senses under conditions of crossmodal sensory conflict. Alternatively, an integrated signal may be affected by upstream influences of WML or a secondary task on the reliabilities of the individual sensory inputs. We examine these possibilities in two experiments which examine effects of WML on reaching tasks in which bisensory visual-proprioceptive (Exp. 1), and unisensory proprioceptive (Exp. 2) cues to hand position are provided. WML increased visual capture under conditions of visual-proprioceptive conflict, regardless of the direction of visual-proprioceptive conflict, and the degree of load imposed. This indicates that task-switching (rather than WML load) leads to an increased reliance on visual information regardless of its task-specific reliability (Exp. 1). This could not be explained due to an increase in the variability of proprioception under secondary working memory task conditions (Exp. 2). We conclude that executive resources are involved in the relative weighting of visual and proprioceptive cues to hand position.


2009 ◽  
Vol 102 (5) ◽  
pp. 2744-2754 ◽  
Author(s):  
J. Bo ◽  
V. Borza ◽  
R. D. Seidler

Numerous studies have shown that older adults exhibit deficits in motor sequence learning, but the mechanisms underlying this effect remain unclear. Our recent work has shown that visuospatial working-memory capacity predicts the rate of motor sequence learning and the length of motor chunks formed during explicit sequence learning in young adults. In the current study, we evaluate whether age-related deficits in working memory explain the reduced rate of motor sequence learning in older adults. We found that older adults exhibited a correlation between visuospatial working-memory capacity and motor sequence chunk length, as we observed previously in young adults. In addition, older adults exhibited an overall reduction in both working-memory capacity and motor chunk length compared with that of young adults. However, individual variations in visuospatial working-memory capacity did not correlate with the rate of learning in older adults. These results indicate that working memory declines with age at least partially explain age-related differences in explicit motor sequence learning.


Sign in / Sign up

Export Citation Format

Share Document