scholarly journals A Comparison of Penalized Maximum Likelihood Estimation and Markov Chain Monte Carlo Techniques for Estimating Confirmatory Factor Analysis Models with Small Sample Sizes

2020 ◽  
Author(s):  
Oliver Lüdtke ◽  
Esther Ulitzsch ◽  
Alexander Robitzsch

With small to modest sample sizes and complex models, maximum likelihood (ML) estimation of confirmatory factor analysis (CFA) models can show serious estimation problems such as nonconvergence or parameter estimates that are outside the admissible parameter space. In the present article, we discuss two Bayesian estimation methods for stabilizing parameter estimates of a CFA: Penalized maximum likelihood (PML) estimation and Markov Chain Monte Carlo (MCMC) methods. We clarify that these use different Bayesian point estimates from the joint posterior distribution—the mode (PML) of the joint posterior distribution, and the mean (EAP) or mode (MAP) of the marginal posterior distribution—and discuss under which conditions the two methods produce different results. In a simulation study, we show that the MCMC method clearly outperforms PML and that these performance gains can be explained by the fact that MCMC uses the EAP as a point estimate. We also argue that it is often advantageous to choose a parameterization in which the main parameters of interest are bounded and suggest the four-parameter beta distribution as a prior distribution for loadings and correlations. Using simulated data, we show that selecting weakly informative four-parameter beta priors can further stabilize parameter estimates, even in cases when the priors were mildly misspecified. Finally, we derive recommendations and propose directions for further research.

2021 ◽  
Vol 12 ◽  
Author(s):  
Oliver Lüdtke ◽  
Esther Ulitzsch ◽  
Alexander Robitzsch

With small to modest sample sizes and complex models, maximum likelihood (ML) estimation of confirmatory factor analysis (CFA) models can show serious estimation problems such as non-convergence or parameter estimates outside the admissible parameter space. In this article, we distinguish different Bayesian estimators that can be used to stabilize the parameter estimates of a CFA: the mode of the joint posterior distribution that is obtained from penalized maximum likelihood (PML) estimation, and the mean (EAP), median (Med), or mode (MAP) of the marginal posterior distribution that are calculated by using Markov Chain Monte Carlo (MCMC) methods. In two simulation studies, we evaluated the performance of the Bayesian estimators from a frequentist point of view. The results show that the EAP produced more accurate estimates of the latent correlation in many conditions and outperformed the other Bayesian estimators in terms of root mean squared error (RMSE). We also argue that it is often advantageous to choose a parameterization in which the main parameters of interest are bounded, and we suggest the four-parameter beta distribution as a prior distribution for loadings and correlations. Using simulated data, we show that selecting weakly informative four-parameter beta priors can further stabilize parameter estimates, even in cases when the priors were mildly misspecified. Finally, we derive recommendations and propose directions for further research.


Methodology ◽  
2005 ◽  
Vol 1 (2) ◽  
pp. 81-85 ◽  
Author(s):  
Stefan C. Schmukle ◽  
Jochen Hardt

Abstract. Incremental fit indices (IFIs) are regularly used when assessing the fit of structural equation models. IFIs are based on the comparison of the fit of a target model with that of a null model. For maximum-likelihood estimation, IFIs are usually computed by using the χ2 statistics of the maximum-likelihood fitting function (ML-χ2). However, LISREL recently changed the computation of IFIs. Since version 8.52, IFIs reported by LISREL are based on the χ2 statistics of the reweighted least squares fitting function (RLS-χ2). Although both functions lead to the same maximum-likelihood parameter estimates, the two χ2 statistics reach different values. Because these differences are especially large for null models, IFIs are affected in particular. Consequently, RLS-χ2 based IFIs in combination with conventional cut-off values explored for ML-χ2 based IFIs may lead to a wrong acceptance of models. We demonstrate this point by a confirmatory factor analysis in a sample of 2449 subjects.


2008 ◽  
Vol 10 (2) ◽  
pp. 153-162 ◽  
Author(s):  
B. G. Ruessink

When a numerical model is to be used as a practical tool, its parameters should preferably be stable and consistent, that is, possess a small uncertainty and be time-invariant. Using data and predictions of alongshore mean currents flowing on a beach as a case study, this paper illustrates how parameter stability and consistency can be assessed using Markov chain Monte Carlo. Within a single calibration run, Markov chain Monte Carlo estimates the parameter posterior probability density function, its mode being the best-fit parameter set. Parameter stability is investigated by stepwise adding new data to a calibration run, while consistency is examined by calibrating the model on different datasets of equal length. The results for the present case study indicate that various tidal cycles with strong (say, >0.5 m/s) currents are required to obtain stable parameter estimates, and that the best-fit model parameters and the underlying posterior distribution are strongly time-varying. This inconsistent parameter behavior may reflect unresolved variability of the processes represented by the parameters, or may represent compensational behavior for temporal violations in specific model assumptions.


Author(s):  
N. Thompson Hobbs ◽  
Mevin B. Hooten

This chapter explains how to implement Bayesian analyses using the Markov chain Monte Carlo (MCMC) algorithm, a set of methods for Bayesian analysis made popular by the seminal paper of Gelfand and Smith (1990). It begins with an explanation of MCMC with a heuristic, high-level treatment of the algorithm, describing its operation in simple terms with a minimum of formalism. In this first part, the chapter explains the algorithm so that all readers can gain an intuitive understanding of how to find the posterior distribution by sampling from it. Next, the chapter offers a somewhat more formal treatment of how MCMC is implemented mathematically. Finally, this chapter discusses implementation of Bayesian models via two routes—by using software and by writing one's own algorithm.


2002 ◽  
Vol 6 (5) ◽  
pp. 883-898 ◽  
Author(s):  
K. Engeland ◽  
L. Gottschalk

Abstract. This study evaluates the applicability of the distributed, process-oriented Ecomag model for prediction of daily streamflow in ungauged basins. The Ecomag model is applied as a regional model to nine catchments in the NOPEX area, using Bayesian statistics to estimate the posterior distribution of the model parameters conditioned on the observed streamflow. The distribution is calculated by Markov Chain Monte Carlo (MCMC) analysis. The Bayesian method requires formulation of a likelihood function for the parameters and three alternative formulations are used. The first is a subjectively chosen objective function that describes the goodness of fit between the simulated and observed streamflow, as defined in the GLUE framework. The second and third formulations are more statistically correct likelihood models that describe the simulation errors. The full statistical likelihood model describes the simulation errors as an AR(1) process, whereas the simple model excludes the auto-regressive part. The statistical parameters depend on the catchments and the hydrological processes and the statistical and the hydrological parameters are estimated simultaneously. The results show that the simple likelihood model gives the most robust parameter estimates. The simulation error may be explained to a large extent by the catchment characteristics and climatic conditions, so it is possible to transfer knowledge about them to ungauged catchments. The statistical models for the simulation errors indicate that structural errors in the model are more important than parameter uncertainties. Keywords: regional hydrological model, model uncertainty, Bayesian analysis, Markov Chain Monte Carlo analysis


2019 ◽  
Vol 4 (2) ◽  
pp. 100
Author(s):  
Catrin Muharisa ◽  
Ferra Yanuar ◽  
Hazmira Yozza

Analisis regresi merupakan salah satu metode untuk melihat hubungan antara variabel bebas (independent) dengan variabel terikat (dependent) yang dinyatakan dalam model regresi. Beberapa metode yang bisa digunakan untuk mengestimasi parameter model regresi, diantaranya adalah metode klasik dan metode Bayes. Salah satu metode klasik adalah metode maximum likelihood. Penelitian ini membahas tentang perbandingan metode maximum likelihood dan metode Bayes dalam mengestimasi parameter model regresi linear berganda untuk data berdistribusi normal. Adapun rumus untuk mengestimasi parameter dengan metode maximum likelihood adalah βˆ=(XTX)-1XTY dan ˆσ2 = 1 n P∞ k=1 ei. Sedangkan untuk mengestimasi parameter dengan metode Bayes adalah dengan menggunakan distribusi prior dan fungsi likelihood. Distribusi prior yag dipilih pada kajian ini adalah f(β, σ2 ) = Qn i=1 f(βj |σ 2 )f(σ 2 ) dengan βj ∼ N(µβj , σ2 ) dan σ 2 ∼ IG(a, b). Distribusi prior konjugat tersebut kemudian dikalikan dengan fungsi likelihood L(β, σ2 ) sehingga membentuk distribusi posterior f(β|σ 2 ). Distribusi posterior inilah yang digunakan untuk mengestimasi parameter model melalui proses Markov Chain Monte Carlo (MCMC). Algoritma MCMC yang digunakan adalah algoritma Gibbs Sampler. Model regresi linear berganda yang diperoleh dengan metode maximum likelihood adalahyˆ = −27, 8210000 + 0, 0307430X1 + 0, 0039211X2 + 0, 0034631X3 + 0, 6537000X4dengan kecocokan modelnya adalah sebesar 95,7 %. Sedangkan model regresi linear berganda yang diperoleh dengan metode Bayes adalahyˆ = −26, 620000 + 0, 029380X1 + 0, 004204X2 + 0, 003321X3 + 0, 656200X4dengan kecocokan modelnya adalah sebesar 99,99 %. Dengan demikian dapat disimpulkan bahwa metode Bayes lebih baik dari pada metode maximum likelihood.Kata Kunci: Model Regresi Linear Berganda, metode Maximum Likelihood, dan metode Bayes


Sign in / Sign up

Export Citation Format

Share Document