scholarly journals Influence of AI and Machine Learning in Insurance Sector

2022 ◽  
Author(s):  
Nitin Prajapati

The Aim of this research is to identify influence, usage, and the benefits of AI (Artificial Intelligence) and ML (Machine learning) using big data analytics in Insurance sector. Insurance sector is the most volatile industry since multiple natural influences like Brexit, pandemic, covid 19, Climate changes, Volcano interruptions. This research paper will be used to explore potential scope and use cases for AI, ML and Big data processing in Insurance sector for Automate claim processing, fraud prevention, predictive analytics, and trend analysis towards possible cause for business losses or benefits. Empirical quantitative research method is used to verify the model with the sample of UK insurance sector analysis. This research will conclude some practical insights for Insurance companies using AI, ML, Big data processing and Cloud computing for the better client satisfaction, predictive analysis, and trending.

Author(s):  
Snigdha Sen ◽  
Sonali Agarwal ◽  
Pavan Chakraborty ◽  
Krishna Pratap Singh

2014 ◽  
Vol 23 (01) ◽  
pp. 27-35 ◽  
Author(s):  
S. de Lusignan ◽  
S-T. Liaw ◽  
C. Kuziemsky ◽  
F. Mold ◽  
P. Krause ◽  
...  

Summary Background: Generally benefits and risks of vaccines can be determined from studies carried out as part of regulatory compliance, followed by surveillance of routine data; however there are some rarer and more long term events that require new methods. Big data generated by increasingly affordable personalised computing, and from pervasive computing devices is rapidly growing and low cost, high volume, cloud computing makes the processing of these data inexpensive. Objective: To describe how big data and related analytical methods might be applied to assess the benefits and risks of vaccines. Method: We reviewed the literature on the use of big data to improve health, applied to generic vaccine use cases, that illustrate benefits and risks of vaccination. We defined a use case as the interaction between a user and an information system to achieve a goal. We used flu vaccination and pre-school childhood immunisation as exemplars. Results: We reviewed three big data use cases relevant to assessing vaccine benefits and risks: (i) Big data processing using crowd-sourcing, distributed big data processing, and predictive analytics, (ii) Data integration from heterogeneous big data sources, e.g. the increasing range of devices in the “internet of things”, and (iii) Real-time monitoring for the direct monitoring of epidemics as well as vaccine effects via social media and other data sources. Conclusions: Big data raises new ethical dilemmas, though its analysis methods can bring complementary real-time capabilities for monitoring epidemics and assessing vaccine benefit-risk balance.


Author(s):  
Amir A. Khwaja

Big data explosion has already happened and the situation is only going to exacerbate with such a high number of data sources and high-end technology prevalent everywhere, generating data at a frantic pace. One of the most important aspects of big data is being able to capture, process, and analyze data as it is happening in real-time to allow real-time business decisions. Alternate approaches must be investigated especially consisting of highly parallel and real-time computations for big data processing. The chapter presents RealSpec real-time specification language that may be used for the modeling of big data analytics due to the inherent language features needed for real-time big data processing such as concurrent processes, multi-threading, resource modeling, timing constraints, and exception handling. The chapter provides an overview of RealSpec and applies the language to a detailed big data event recognition case study to demonstrate language applicability to big data framework and analytics modeling.


Author(s):  
Rajganesh Nagarajan ◽  
Ramkumar Thirunavukarasu

In this chapter, the authors consider different categories of data, which are processed by the big data analytics tools. The challenges with respect to the big data processing are identified and a solution with the help of cloud computing is highlighted. Since the emergence of cloud computing is highly advocated because of its pay-per-use concept, the data processing tools can be effectively deployed within cloud computing and certainly reduce the investment cost. In addition, this chapter talks about the big data platforms, tools, and applications with data visualization concept. Finally, the applications of data analytics are discussed for future research.


Big Data ◽  
2016 ◽  
pp. 418-440
Author(s):  
Amir A. Khwaja

Big data explosion has already happened and the situation is only going to exacerbate with such a high number of data sources and high-end technology prevalent everywhere, generating data at a frantic pace. One of the most important aspects of big data is being able to capture, process, and analyze data as it is happening in real-time to allow real-time business decisions. Alternate approaches must be investigated especially consisting of highly parallel and real-time computations for big data processing. The chapter presents RealSpec real-time specification language that may be used for the modeling of big data analytics due to the inherent language features needed for real-time big data processing such as concurrent processes, multi-threading, resource modeling, timing constraints, and exception handling. The chapter provides an overview of RealSpec and applies the language to a detailed big data event recognition case study to demonstrate language applicability to big data framework and analytics modeling.


2020 ◽  
Vol 10 (14) ◽  
pp. 4901
Author(s):  
Waleed Albattah ◽  
Rehan Ullah Khan ◽  
Khalil Khan

Processing big data requires serious computing resources. Because of this challenge, big data processing is an issue not only for algorithms but also for computing resources. This article analyzes a large amount of data from different points of view. One perspective is the processing of reduced collections of big data with less computing resources. Therefore, the study analyzed 40 GB data to test various strategies to reduce data processing. Thus, the goal is to reduce this data, but not to compromise on the detection and model learning in machine learning. Several alternatives were analyzed, and it is found that in many cases and types of settings, data can be reduced to some extent without compromising detection efficiency. Tests of 200 attributes showed that with a performance loss of only 4%, more than 80% of the data could be ignored. The results found in the study, thus provide useful insights into large data analytics.


Sign in / Sign up

Export Citation Format

Share Document