scholarly journals A Research on Machine Learning Methods for Big Data Processing

Author(s):  
Junfei Qiu ◽  
Youming Sun
2019 ◽  
Vol 19 (25) ◽  
pp. 2301-2317 ◽  
Author(s):  
Ruirui Liang ◽  
Jiayang Xie ◽  
Chi Zhang ◽  
Mengying Zhang ◽  
Hai Huang ◽  
...  

In recent years, the successful implementation of human genome project has made people realize that genetic, environmental and lifestyle factors should be combined together to study cancer due to the complexity and various forms of the disease. The increasing availability and growth rate of ‘big data’ derived from various omics, opens a new window for study and therapy of cancer. In this paper, we will introduce the application of machine learning methods in handling cancer big data including the use of artificial neural networks, support vector machines, ensemble learning and naïve Bayes classifiers.


Author(s):  
Snigdha Sen ◽  
Sonali Agarwal ◽  
Pavan Chakraborty ◽  
Krishna Pratap Singh

2019 ◽  
Author(s):  
Zhenzhen Du ◽  
Yujie Yang ◽  
Jing Zheng ◽  
Qi Li ◽  
Denan Lin ◽  
...  

BACKGROUND Predictions of cardiovascular disease risks based on health records have long attracted broad research interests. Despite extensive efforts, the prediction accuracy has remained unsatisfactory. This raises the question as to whether the data insufficiency, statistical and machine-learning methods, or intrinsic noise have hindered the performance of previous approaches, and how these issues can be alleviated. OBJECTIVE Based on a large population of patients with hypertension in Shenzhen, China, we aimed to establish a high-precision coronary heart disease (CHD) prediction model through big data and machine-learning METHODS Data from a large cohort of 42,676 patients with hypertension, including 20,156 patients with CHD onset, were investigated from electronic health records (EHRs) 1-3 years prior to CHD onset (for CHD-positive cases) or during a disease-free follow-up period of more than 3 years (for CHD-negative cases). The population was divided evenly into independent training and test datasets. Various machine-learning methods were adopted on the training set to achieve high-accuracy prediction models and the results were compared with traditional statistical methods and well-known risk scales. Comparison analyses were performed to investigate the effects of training sample size, factor sets, and modeling approaches on the prediction performance. RESULTS An ensemble method, XGBoost, achieved high accuracy in predicting 3-year CHD onset for the independent test dataset with an area under the receiver operating characteristic curve (AUC) value of 0.943. Comparison analysis showed that nonlinear models (K-nearest neighbor AUC 0.908, random forest AUC 0.938) outperform linear models (logistic regression AUC 0.865) on the same datasets, and machine-learning methods significantly surpassed traditional risk scales or fixed models (eg, Framingham cardiovascular disease risk models). Further analyses revealed that using time-dependent features obtained from multiple records, including both statistical variables and changing-trend variables, helped to improve the performance compared to using only static features. Subpopulation analysis showed that the impact of feature design had a more significant effect on model accuracy than the population size. Marginal effect analysis showed that both traditional and EHR factors exhibited highly nonlinear characteristics with respect to the risk scores. CONCLUSIONS We demonstrated that accurate risk prediction of CHD from EHRs is possible given a sufficiently large population of training data. Sophisticated machine-learning methods played an important role in tackling the heterogeneity and nonlinear nature of disease prediction. Moreover, accumulated EHR data over multiple time points provided additional features that were valuable for risk prediction. Our study highlights the importance of accumulating big data from EHRs for accurate disease predictions.


2019 ◽  
Vol 24 (34) ◽  
pp. 3998-4006
Author(s):  
Shijie Fan ◽  
Yu Chen ◽  
Cheng Luo ◽  
Fanwang Meng

Background: On a tide of big data, machine learning is coming to its day. Referring to huge amounts of epigenetic data coming from biological experiments and clinic, machine learning can help in detecting epigenetic features in genome, finding correlations between phenotypes and modifications in histone or genes, accelerating the screen of lead compounds targeting epigenetics diseases and many other aspects around the study on epigenetics, which consequently realizes the hope of precision medicine. Methods: In this minireview, we will focus on reviewing the fundamentals and applications of machine learning methods which are regularly used in epigenetics filed and explain their features. Their advantages and disadvantages will also be discussed. Results: Machine learning algorithms have accelerated studies in precision medicine targeting epigenetics diseases. Conclusion: In order to make full use of machine learning algorithms, one should get familiar with the pros and cons of them, which will benefit from big data by choosing the most suitable method(s).


2020 ◽  
Vol 10 (14) ◽  
pp. 4901
Author(s):  
Waleed Albattah ◽  
Rehan Ullah Khan ◽  
Khalil Khan

Processing big data requires serious computing resources. Because of this challenge, big data processing is an issue not only for algorithms but also for computing resources. This article analyzes a large amount of data from different points of view. One perspective is the processing of reduced collections of big data with less computing resources. Therefore, the study analyzed 40 GB data to test various strategies to reduce data processing. Thus, the goal is to reduce this data, but not to compromise on the detection and model learning in machine learning. Several alternatives were analyzed, and it is found that in many cases and types of settings, data can be reduced to some extent without compromising detection efficiency. Tests of 200 attributes showed that with a performance loss of only 4%, more than 80% of the data could be ignored. The results found in the study, thus provide useful insights into large data analytics.


Sign in / Sign up

Export Citation Format

Share Document