scholarly journals Mathematical Modeling and Inference for Degree-capped Ego-centric Network Sampling

2018 ◽  
Author(s):  
Babak ◽  
Steven Rytina

The structure of social networks is usually inferred from limited sets of observations via suitable network sampling designs. In offline social network sampling, for practical considerations, researchers sometimes build in a cap on the number of social ties any respondent may claim. It is commonly known in the literature that using a cap on the degrees begets methodologically undesirable features because it discards information about the network connections. In this paper, we consider a mathematical model of this sampling procedure and seek analytical solutions to recover some of the lost information about the underlying network. We obtain closed-form expressions for several network statistics, including the first and second moments of the degree distribution, network density, number of triangles, and clustering. We corroborate the accuracy of these estimators via simulated and empirical network data. Our contribution highlights notable room for improvement in the analysis of some existing social network data sets.

2017 ◽  
Vol 6 (1) ◽  
pp. 1-33 ◽  
Author(s):  
ANJA ŽNIDARŠIČ ◽  
ANUŠKA FERLIGOJ ◽  
PATRICK DOREIAN

AbstractSocial network data are prone to errors regardless their source. This paper focuses on missing data due to actor non-response in valued networks. If actors refuse to provide information, all values for outgoing ties are missing. Partially observed incoming ties to non-respondents and all other patterns for ties between members of the network can be used to impute missing outgoing ties. Many centrality measures are used to determine the most prominent actors inside the network. Using treatments for actor non-response enables us to estimate better the centrality scores of all actors regarding their popularity or prominence. Simulations using initial known blockmodel structures based on three most frequently occurring macro-network structures: cohesive subgroups, core-periphery models, and hierarchical structures were used to evaluate the relative merits of the treatments for non-response. The results indicate that the amount of non-respondents, the type of underlying macro-structure, and the employed treatment have an impact on centrality scores. Regardless of the underlying network structure, the median of the 3-nearest neighbors based on incoming ties performs the best. The adequacy (or not) of the other non-response treatments is contingent on the network macro-structure.


2014 ◽  
Vol 10 (1) ◽  
pp. 57-76 ◽  
Author(s):  
Hongjun Yin ◽  
Jing Li ◽  
Yue Niu

Social network partitioning has become a very important function. One objective for partitioning is to identify interested communities to target for marketing and advertising activities. The bottleneck to detection of these communities is the large scalability of the social network. Previous methods did not effectively address the problem because they considered the overall network. Social networks have strong locality, so designing a local algorithm to find an interested community to address this objective is necessary. In this paper, we develop a local partition algorithm, named, Personalized PageRank Partitioning, to identify the community. We compute the conductance of the social network with a Personalized PageRank and Markov chain stationary distribution of the social network, and then sweep the conductance to find the smallest cut. The efficiency of the cut can reach. In order to detect a larger scale social network, we design and implement the algorithm on a MapReduce-programming framework. Finally, we execute our experiment on several actual social network data sets and compare our method to others. The experimental results show that our algorithm is feasible and very effective.


2015 ◽  
Vol 21 ◽  
pp. 301
Author(s):  
Armand Krikorian ◽  
Lily Peng ◽  
Zubair Ilyas ◽  
Joumana Chaiban

Methodology ◽  
2006 ◽  
Vol 2 (1) ◽  
pp. 42-47 ◽  
Author(s):  
Bonne J. H. Zijlstra ◽  
Marijtje A. J. van Duijn ◽  
Tom A. B. Snijders

The p 2 model is a random effects model with covariates for the analysis of binary directed social network data coming from a single observation of a social network. Here, a multilevel variant of the p 2 model is proposed for the case of multiple observations of social networks, for example, in a sample of schools. The multilevel p 2 model defines an identical p 2 model for each independent observation of the social network, where parameters are allowed to vary across the multiple networks. The multilevel p 2 model is estimated with a Bayesian Markov Chain Monte Carlo (MCMC) algorithm that was implemented in free software for the statistical analysis of complete social network data, called StOCNET. The new model is illustrated with a study on the received practical support by Dutch high school pupils of different ethnic backgrounds.


Data in Brief ◽  
2021 ◽  
Vol 35 ◽  
pp. 106898
Author(s):  
Cordelia Sophie Kreft ◽  
Mario Angst ◽  
Robert Huber ◽  
Robert Finger

2021 ◽  
Vol 7 ◽  
pp. 237802312098525
Author(s):  
Balazs Kovacs ◽  
Nicholas Caplan ◽  
Samuel Grob ◽  
Marissa King

We utilize longitudinal social network data collected pre–COVID-19 in June 2019 and compare them with data collected in the midst of COVID in June 2020. We find significant decreases in network density and global network size following a period of profound social isolation. While there is an overall increase in loneliness during this era, certain social network characteristics of individuals are associated with smaller increases in loneliness. Specifically, we find that people with fewer than five “very close” relationships report increases in loneliness. We further find that face-to-face interactions, as well as the duration and frequency of interactions with very close ties, are associated with smaller increases in loneliness during the pandemic. We also report on factors that do not moderate the effect of social isolation on perceived loneliness, such as gender, age, or overall social network size.


Sign in / Sign up

Export Citation Format

Share Document