scholarly journals Variable Optical Buffer Using EIT in Three Level System Based on Semiconductor Conical Quantum Dots

2020 ◽  
Vol 12 (01) ◽  
pp. 50-60
Author(s):  
Nooralhuda S.Yaqoob ◽  
◽  
Sabah M.M. Ameen ◽  

A variable semiconductor optical buffer based on the electromagnetically induced transparency (EIT) in a three level conical quantum dot system (CQD) is theoretically investigated. The system is interacting with two (control and signal) laser beams. Signal light with subluminal velocity is possible in such system through the quantum interference effect induced by the control pump field. We investigate the refractive index and absorption spectra of the QD waveguide at different pump levels, which exhibit an optimal pump power for maximum slow-down factor (SDF). The group velocity SDF is theoretically analyzed as a function of the pump intensity at different broadened linewidths. The present study is based on the assumption that the medium is homogeneous. In this paper, a SDF as a function of CQD radius was studied. The simulation results indicate that the SDF increases with decreasing CQD radius.

Science ◽  
2010 ◽  
Vol 330 (6010) ◽  
pp. 1520-1523 ◽  
Author(s):  
Stefan Weis ◽  
Rémi Rivière ◽  
Samuel Deléglise ◽  
Emanuel Gavartin ◽  
Olivier Arcizet ◽  
...  

Electromagnetically induced transparency is a quantum interference effect observed in atoms and molecules, in which the optical response of an atomic medium is controlled by an electromagnetic field. We demonstrated a form of induced transparency enabled by radiation-pressure coupling of an optical and a mechanical mode. A control optical beam tuned to a sideband transition of a micro-optomechanical system leads to destructive interference for the excitation of an intracavity probe field, inducing a tunable transparency window for the probe beam. Optomechanically induced transparency may be used for slowing and on-chip storage of light pulses via microfabricated optomechanical arrays.


Nanophotonics ◽  
2017 ◽  
Vol 6 (5) ◽  
pp. 789-811 ◽  
Author(s):  
Yong-Chun Liu ◽  
Bei-Bei Li ◽  
Yun-Feng Xiao

AbstractElectromagnetically induced transparency (EIT) is a quantum interference effect arising from different transition pathways of optical fields. Within the transparency window, both absorption and dispersion properties strongly change, which results in extensive applications such as slow light and optical storage. Due to the ultrahigh quality factors, massive production on a chip and convenient all-optical control, optical microcavities provide an ideal platform for realizing EIT. Here we review the principle and recent development of EIT in optical microcavities. We focus on the following three situations. First, for a coupled-cavity system, all-optical EIT appears when the optical modes in different cavities couple to each other. Second, in a single microcavity, all-optical EIT is created when interference happens between two optical modes. Moreover, the mechanical oscillation of the microcavity leads to optomechanically induced transparency. Then the applications of EIT effect in microcavity systems are discussed, including light delay and storage, sensing, and field enhancement. A summary is then given in the final part of the paper.


1995 ◽  
Vol 04 (02) ◽  
pp. 261-282 ◽  
Author(s):  
Y. ZHAO ◽  
D. HUANG ◽  
C. WU

This paper presents the current results of field-induced quantum interference in semiconductor quantum wells. Three-level systems with two conduction subbands in single and double quantum wells coupled by a resonant field are studied. We investigate effects of the Coulomb and field-induced electronic renormalizations of the energy subbands and steady eigenstates of electrons. The random-phase and ladder approximations have been used to calculate the linear interband and intersubband optical absorptions and refractive indices. The effect of collective dipole moment on the nonlinear susceptibility has been incorporated into the study by using a local-field approach. Lasing without population inversion, electromagnetically induced transparency, and enhanced nonlinearity with reduced absorption inside the intersubband-coupled single quantum well and dc-field coupled double quantum wells are found.


Sign in / Sign up

Export Citation Format

Share Document