pump intensity
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 23)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Ji Wang ◽  
Yanqing Zheng ◽  
Yunlin Chen

Abstract Optical parametric chirped pulse amplification (OPCPA) shows great potential in producing ultrashort high-intensity pulses because of its large gain bandwidth. Quasi-parametric chirped pulse amplification (QPCPA) may further extend the bandwidth, but the behavior of QPCPA at a limited pump intensity (e.g., ≤5 GW/cm2 in a nanosecond pumped QPCPA) is not fully investigated yet. We have discussed in detail the ultra-broadband amplification and the noncollinear phase-matching geometry in QPCPA. We have modeled and developed a novel noncollinear geometry in QPCPA namely ’triple-wavelength phase-matching geometry’ which provides two additional phase-matching points around the phase-matching point at the center wavelength. Our analysis demonstrates that the triple-wavelength phase-matching geometry can support stable, ultra-broadband amplification in QPCPA. The numerical simulation results show that ultrashort pulse with a pulse duration of 7.92 fs can be achieved in QPCPA when the pump intensity is limited to 5 GW/cm2, calculated using the nonlinear coefficient of YCOB.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012102
Author(s):  
V Agekyan ◽  
N Filosofov ◽  
G Karczewski ◽  
A Serov ◽  
I Shtrom ◽  
...  

Abstract The photoluminescence (PL) spectra of CdTe/ZnTe double quantum wells (QWs) are studied on a series of samples containing two CdTe layers with nominal thicknesses of 2 and 4 monolayers (ML) in the ZnTe matrix. The QWs were grown in atomic-layer epitaxy and separated by ZnTe spacers with the thicknesses dsp =40−160 ML. The dependences of the relative intensity of shallow QW1 and deep QW2 PL bands (I1 and I2 , respectively) on the pump intensity (J) when excited by the lasers with different radiation wavelengths are investigated. It is found that in the sample with dsp=40 ML, the ratio Y(J)=I1/I2 depends on J and the shape of the Y(J) dependency changes with the excitation wavelength. In the samples with dsp > 70 ML Y(J) also changes with the excitation intensity J, but the shape of this dependence is the same for various excitation wavelengths. It is concluded that the energy relaxation in these samples is influenced not only by the tunneling of charge carriers from QW1 to QW2, but also by carrier relaxation at the nonradiative centers, for which the recombination rate is different for shallow and deep QWs.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 898
Author(s):  
Jian Liu ◽  
Jifei Dong ◽  
Yinyin Wang ◽  
Hangqi Yuan ◽  
Qingsong Song ◽  
...  

Single crystals fiber (SCF) of LuAG doped with 2.0 at.% thulium has been grown by using micro-pulling down (µ-PD) technique. A continuous-wave output power of 2.44 W was achieved with a slope efficiency of 11.7% using a 783-nm diode laser as pump source. The beam quality factors M2 were 1.14 and 1.67 in the x and y directions, respectively. This is, to the best of our knowledge, the first report on the Tm:LuAG SCF laser. Using ray tracing analysis, the influence of laser performance by the pump intensity distribution in the SCF was also studied.


2021 ◽  
Vol 31 (3) ◽  
Author(s):  
Nguyen Manh Thang

In this paper, a model of dual-beam nonlinear Fabry-Perot interferometer (DBNFPI) for creation laser hollow-Gaussian beam (HGB) is investigated. It includes a thin film of organic dye sandwiched between two optical mirrors, and irradiated by two signal and pump laser Gaussian beams. Based on the equation describing the output-input relation of intensities concerning pump intensity and the expression of the spatial intensity distribution of output signal beam (OSB), the range of pump intensity and collection of designed parameters are numerically calculated and discussed for HGB creation. These results give us the opportunity to use DBNFPI for optical trap of low-index dielectric particles.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Justus Bohn ◽  
Ting Shan Luk ◽  
Craig Tollerton ◽  
Sam W. Hutchings ◽  
Igal Brener ◽  
...  

AbstractNonlinear optical devices and their implementation into modern nanophotonic architectures are constrained by their usually moderate nonlinear response. Recently, epsilon-near-zero (ENZ) materials have been found to have a strong optical nonlinearity, which can be enhanced through the use of cavities or nano-structuring. Here, we study the pump dependent properties of the plasmon resonance in the ENZ region in a thin layer of indium tin oxide (ITO). Exciting this mode using the Kretschmann-Raether configuration, we study reflection switching properties of a 60 nm layer close to the resonant plasmon frequency. We demonstrate a thermal switching mechanism, which results in a shift in the plasmon resonance frequency of 20 THz for a TM pump intensity of 70 GW cm−2. For degenerate pump and probe frequencies, we highlight an additional two-beam coupling contribution, not previously isolated in ENZ nonlinear optics studies, which leads to an overall pump induced change in reflection from 1% to 45%.


Crystals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 50
Author(s):  
Ninel Kokanyan ◽  
Nune Mkhitaryan ◽  
Gagik Demirkhanyan ◽  
Ajith Kumar ◽  
Michel Aillerie ◽  
...  

The possibilities of LiNbO3-Tm3+ crystals for optical cooling based on anti-Stokes luminescence in the wavelength range of 1818–2200 nm are investigated. The concentration dependences of the final temperature of the crystal have been determined under continuous (CW) excitation at wavelengths of 1822–1977 nm with a pump intensity Fp=5×1021 cm−2s−1. It was shown that significant cooling with ∆T = 22 K, 19 K, and 16.4 K can be achieved, respectively, with excitation at wavelengths 1977, 1967, and 1948 nm.


2020 ◽  
Vol 12 (01) ◽  
pp. 50-60
Author(s):  
Nooralhuda S.Yaqoob ◽  
◽  
Sabah M.M. Ameen ◽  

A variable semiconductor optical buffer based on the electromagnetically induced transparency (EIT) in a three level conical quantum dot system (CQD) is theoretically investigated. The system is interacting with two (control and signal) laser beams. Signal light with subluminal velocity is possible in such system through the quantum interference effect induced by the control pump field. We investigate the refractive index and absorption spectra of the QD waveguide at different pump levels, which exhibit an optimal pump power for maximum slow-down factor (SDF). The group velocity SDF is theoretically analyzed as a function of the pump intensity at different broadened linewidths. The present study is based on the assumption that the medium is homogeneous. In this paper, a SDF as a function of CQD radius was studied. The simulation results indicate that the SDF increases with decreasing CQD radius.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2448
Author(s):  
Shengnan Guan ◽  
Jierong Cheng ◽  
Tiehong Chen ◽  
Shengjiang Chang

Graphene under optical pump has been shown to be an attractive gain medium with negative dynamic conductivity at terahertz frequencies. However, the amplification over a monolayer graphene is very weak due to its one-atom thickness. In this paper, the proposed graphene-dielectric reflective metasurface effectively improved terahertz field localization and enhanced coherent amplification. The amplification coefficient of 35 was obtained at 3.38 THz at room temperature with an infrared pump intensity of 8 W/mm2. As pump intensity increased from 0 to 15 W/mm2, we observed a loss–gain–loss transition process, which was discussed in detail through coupled-mode theory. In addition, amplification at different frequencies was achieved by merely re-optimizing the geometric parameters of the dielectric resonators. This study offers an effective solution for enhancing terahertz radiation and developing terahertz lasers.


Nanophotonics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 667-678
Author(s):  
Ahmed Mekawy ◽  
Andrea Alù

AbstractUltrathin engineered metasurfaces loaded with multiple quantum wells (MQWs) form a highly efficient platform for nonlinear optics. Here we discuss different approaches to realize mid infrared metasurfaces with localized second-harmonic generation based on optimal metasurface designs integrating engineered MQWs. We first explore the combination of surface lattice resonances and localized electromagnetic resonances in nanoresonators to achieve very large field concentrations. However, when we consider finite size effects, the field enhancement drops significantly together with the conversion efficiency. To overcome this shortcoming, we explore nonetched L-shaped dielectric nanocylinders and etched arrow-shaped nanoresonators that locally support multiple overlapped resonances maximizing the conversion efficiency. In particular, we show the realistic possibility to achieve up to 4.5% efficiency for a normal incident pump intensity of 50 kW/cm2, stemming from inherently local phenomena, including saturation effects in the MQW. Finally, we present a comparison between pros and cons of each approach. We believe that our study provides new opportunities for designing highly efficient nonlinear responses from metasurfaces (MSs) coupled to MQW and to maximize their impact on technology.


Sign in / Sign up

Export Citation Format

Share Document