scholarly journals Comparative study of macrofungi in different patches of Boshan Community Forest in Kathmandu, Central Nepal

2018 ◽  
Vol 11 ◽  
pp. 43-48
Author(s):  
Bhawani Bhandari ◽  
Sanjay Kumar Jha

 Macrofungi are considered as a group of high-value forest resources worldwide. In this paper, we report species richness and composition of macrofungi in three different forest patches (Schima-Castanopsis, Pinus and Alnus forest) of mid-hill, central Nepal, which were managed under Boshan Community Forest. A Systematic random sampling was applied where 20 rectangular plots of size 10 m x 10 m were laid at 1500 m to 1600 m elevation in each forest type. Species richness and composition of macrofungi were accessed in each forest type. Schima-Castanopsis forest was the richest in terms of macrofungal diversity (70 species), followed by Alnus forest (64) and Pinus forest (56). Polyporaceae was the largest family, followed by Amanitaceae. Agaricales (Rusulla and Amanita) were dominant in Schima-wallichi and Alnus forests, whereas Boletales were dominant in Pine forest. Macrofungal species richness increased with increasing canopy, soil moisture and soil pH. The species richness, however, had weak relationships with litter cover and disturbance. Based on the present study it can be concluded that the study area is rich in macrofungal diversity. Moist soil followed by litter and decaying wood assist the higher diversity of macrofungi. Species diversity is higher in moist and dense canopy forests (like, Schima-Castanopsis and alder) than in open and dry pine forest. Soil moisture, soil pH and tree canopy cover are the most important variables affecting macrofungal diversity. Botanica Orientalis – Journal of Plant Science (2017) 11: 43–48 

2014 ◽  
Author(s):  
David R. Patton ◽  
Richard W. Hofstetter ◽  
John D. Bailey ◽  
Mary Ann Benoit

2005 ◽  
Vol 2 (4) ◽  
pp. 1807-1834 ◽  
Author(s):  
R. Sørensen ◽  
U. Zinko ◽  
J. Seibert

Abstract. The topographic wetness index (TWI, ln(a/tanβ)), which combines local upslope contributing area and slope, is commonly used to quantify topographic control on hydrological processes. Methods of computing this index differ primarily in the way the upslope contributing area is calculated. In this study we compared a number of calculation methods for TWI and evaluated them in terms of their correlation with the following measured variables: vascular plant species richness, soil pH, groundwater level, soil moisture, and a constructed wetness degree. The TWI was calculated by varying six parameters affecting the distribution of accumulated area among downslope cells and by varying the way the slope was calculated. All possible combinations of these parameters were calculated for two separate boreal forest sites in northern Sweden. We did not find a calculation method that performed best for all measured variables, but we were able to identify the general characteristics of the best methods for different groups of measured variables. The results provide guidelines for choosing the best method for estimating species richness, soil pH, groundwater level, and soil moisture by the TWI derived from digital elevation models.


1997 ◽  
Vol 45 (2) ◽  
pp. 211 ◽  
Author(s):  
G. A. Duff ◽  
B. A. Myers ◽  
R. J. Williams ◽  
D. Eamus ◽  
A. O'Grady ◽  
...  

The wet–dry tropics of northern Australia are characterised by extreme seasonal variation in rainfall and atmospheric vapour pressure deficit, although temperatures are relatively constant throughout the year.This seasonal variation is associated with marked changes in tree canopy cover, although the exact determinants of these changes are complex. This paper reports variation in microclimate (temperature, vapour pressure deficit (VPD)), rainfall, soil moisture, understorey light environment (total daily irradiance), and pre-dawn leaf water potential of eight dominant tree species in an area of savanna near Darwin, Northern Territory, Australia. Patterns of canopy cover are strongly influenced by both soil moisture and VPD. Increases in canopy cover coincide with decreases in VPD, and occur prior to increases in soil moisture that occur with the onset of wet season rains. Decreases in canopy cover coincide with decreases in soil moisture following the cessation of wet season rains and associated increases in VPD. Patterns of pre-dawn water potential vary significantly between species and between leaf phenological guilds. Pre-dawn water potential increases with decreasing VPD towards the end of the dry season prior to any increases in soil moisture. Decline in pre-dawn water potential coincides with both decreasing soil moisture and increasing VPD at the end of the dry season. This study emphasises the importance of the annual transition between the dry season and the wet season, a period of 1–2 months of relatively low VPD but little or no effective rainfall, preceded by a 4–6 month dry season of no rainfall and high VPD. This period is accompanied by markedly increased canopy cover, and significant increases in pre-dawn water potential, which are demonstrably independent of rainfall. This finding emphasises the importance of VPD as a determinant of physiological and phenological processes in Australian savannas.


2006 ◽  
Vol 10 (1) ◽  
pp. 101-112 ◽  
Author(s):  
R. Sørensen ◽  
U. Zinko ◽  
J. Seibert

Abstract. The topographic wetness index (TWI, ln(a/tanβ)), which combines local upslope contributing area and slope, is commonly used to quantify topographic control on hydrological processes. Methods of computing this index differ primarily in the way the upslope contributing area is calculated. In this study we compared a number of calculation methods for TWI and evaluated them in terms of their correlation with the following measured variables: vascular plant species richness, soil pH, groundwater level, soil moisture, and a constructed wetness degree. The TWI was calculated by varying six parameters affecting the distribution of accumulated area among downslope cells and by varying the way the slope was calculated. All possible combinations of these parameters were calculated for two separate boreal forest sites in northern Sweden. We did not find a calculation method that performed best for all measured variables; rather the best methods seemed to be variable and site specific. However, we were able to identify some general characteristics of the best methods for different groups of measured variables. The results provide guiding principles for choosing the best method for estimating species richness, soil pH, groundwater level, and soil moisture by the TWI derived from digital elevation models.


2003 ◽  
Vol 33 (10) ◽  
pp. 2052-2057 ◽  
Author(s):  
Briana C Lindh ◽  
Andrew N Gray ◽  
Thomas A Spies

We tested the effect of root trenching on vegetation in closed-canopy and gap locations in Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forests. Based on theory, we expected belowground competition to be intense in a region with low summer rainfall, and trench responses were expected to be greater in the high light environment of the gaps. We installed 1 m deep trenches around study plots and lined the trenches to prevent reinvasion by tree roots. Soil moisture was measured monthly during the growing season for the first 3 years after trench installation. Vegetation in these trenched plots was compared with control plots 10 years after installation of the plots. Trenched plots with no vegetation manipulation averaged 92% total understory cover, while untrenched plots averaged 47% cover. Contrary to our expectation, both vegetation and soil moisture responses to trenching were greater in areas of high tree canopy cover than in gaps. Trenched plots under closed canopies were moister than control plots throughout the growing season, while the trenching effect became apparent in the overall wetter gaps only at the end of the growing season. We conclude that understory plants at these sites were limited at least as much by belowground competition as by aboveground competition.


Author(s):  
N.A. Thomson

In a four year grazing trial with dairy cows the application of 5000 kg lime/ ha (applied in two applications of 2500 kg/ha in winter of the first two years) significantly increased annual pasture production in two of the four years and dairy production in one year. In three of the four years lime significantly increased pasture growth over summer/autumn with concurrent increases in milk production. In the last year of the trial lime had little effect on pasture growth but a relatively large increase in milkfat production resulted. A higher incidence of grass staggers was recorded on the limed farmlets in spring for each of the four years. In the second spring immediately following the second application of lime significant depressions in both pasture and plasma magnesium levels were recorded. By the third spring differences in plasma magnesium levels were negligible but small depressions in herbage magnesium resulting from lime continued to the end of the trial. Lime significantly raised soil pH, Ca and Mg levels but had no effect on either soil K or P. As pH levels of the unlimed paddocks were low (5.2-5.4) in each autumn and soil moisture levels were increased by liming, these factors may suggest possible causes for the seasonality of the pasture response to lime


2013 ◽  
Vol 12 (2) ◽  
pp. 191-199 ◽  
Author(s):  
Sarah K. Mincey ◽  
Mikaela Schmitt-Harsh ◽  
Richard Thurau

2021 ◽  
Vol 13 (5) ◽  
pp. 2640
Author(s):  
Muhammad Zubair ◽  
Akash Jamil ◽  
Syed Bilal Hussain ◽  
Ahsan Ul Haq ◽  
Ahmad Hussain ◽  
...  

The moist temperate forests in Northern Pakistan are home to a variety of flora and fauna that are pivotal in sustaining the livelihoods of the local communities. In these forests, distribution and richness of vegetation, especially that of medicinal plants, is rarely reported. In this study, we carried out a vegetation survey in District Balakot, located in Northeastern Pakistan, to characterize the diversity of medicinal plants under different canopies of coniferous forest. The experimental site was divided into three major categories (viz., closed canopy, open spaces, and partial tree cover). A sampling plot of 100 m2 was established on each site to measure species diversity, dominance, and evenness. To observe richness and abundance, the rarefaction and rank abundance curves were plotted. Results revealed that a total of 45 species representing 34 families were available in the study site. Medicinal plants were the most abundant (45%) followed by edible plants (26%). Tree canopy cover affected the overall growth of medicinal plants on the basis of abundance and richness. The site with partial canopy exhibited the highest diversity, dominance, and abundance compared to open spaces and closed canopy. These findings are instrumental in identifying the wealth of the medicinal floral diversity in the northeastern temperate forest of Balakot and the opportunity to sustain the livelihoods of local communities with the help of public/private partnership.


2020 ◽  
Vol 3 (1) ◽  
pp. 58
Author(s):  
Rachele Venanzi ◽  
Loredana Barbona ◽  
Francesco Latterini ◽  
Rodolfo Picchio

The aim of this work was to assess the possible impacts on the forest soil and stand due to silvicultural treatment and forest operations in a beech high forest. Even aged beech forests (Fagus sylvatica L.) in the Municipality of Cappadocia (L’Aquila) and in the Municipality of Vallepietra (Roma) were analyzed. The analysis of the soil and stand were performed in order to assess the effects attributable to applied silviculture and forest logging. Two different logging methodologies (in particular for the extraction) were applied: mules were used in the areas with greater slopes and with obstacles, while for the areas with better accessibility, mechanical means were used, in this case tractors. In detail, the main objective was to assess the disturbance on the ground and on the stand, generated by the two different levels of mechanization. In addition, it was also interesting to understand the possible effect on the soil and specifically on the partial uncovering where part of the tree canopy was removed. Only through an accurate cross-analysis of the studied parameters and indices could the anthropogenic impacts on the soil and stand due to forest operations be highlighted according to the different logging methodologies applied. The main results showed that the disturbances caused to the soil and stand were essentially caused in the bunching and extraction operations. The importance of avoiding or limiting the continuous passage of vehicles and animals on forest soil clearly emerges, especially in conditions of high soil moisture. It is also important to use correct technologies that are adequate for the specific environmental characteristics and the work plan. Finally, it can be said that there was no difference in the disturbance caused by the two logging methods when compared. Substantial differences in terms of improvement can be defined when comparing the findings of this study with other research studies. This can be done by applying a different type of mechanization with a different logging system.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 433
Author(s):  
Xiaolan Huang ◽  
Weicheng Wu ◽  
Tingting Shen ◽  
Lifeng Xie ◽  
Yaozu Qin ◽  
...  

This research was focused on estimation of tree canopy cover (CC) by multiscale remote sensing in south China. The key aim is to establish the relationship between CC and woody NDVI (NDVIW) or to build a CC-NDVIW model taking northeast Jiangxi as an example. Based on field CC measurements, this research used Google Earth as a complementary source to measure CC. In total, 63 sample plots of CC were created, among which 45 were applied for modeling and the remaining 18 were employed for verification. In order to ascertain the ratio R of NDVIW to the satellite observed NDVI, a 20-year time-series MODIS NDVI dataset was utilized for decomposition to obtain the NDVIW component, and then the ratio R was calculated with the equation R = (NDVIW/NDVI) *100%, respectively, for forest (CC >60%), medium woodland (CC = 25–60%) and sparse woodland (CC 1–25%). Landsat TM and OLI images that had been orthorectified by the provider USGS were atmospherically corrected using the COST model and used to derive NDVIL. R was multiplied for the NDVIL image to extract the woody NDVI (NDVIWL) from Landsat data for each of these plots. The 45 plots of CC data were linearly fitted to the NDVIWL, and a model with CC = 103.843 NDVIW + 6.157 (R2 = 0.881) was obtained. This equation was applied to predict CC at the 18 verification plots and a good agreement was found (R2 = 0.897). This validated CC-NDVIW model was further applied to the woody NDVI of forest, medium woodland and sparse woodland derived from Landsat data for regional CC estimation. An independent group of 24 measured plots was utilized for validation of the results, and an accuracy of 83.0% was obtained. Thence, the developed model has high predictivity and is suitable for large-scale estimation of CC using high-resolution data.


Sign in / Sign up

Export Citation Format

Share Document