scholarly journals Effectiveness of Percutaneous Pedicle Screw Fixation for Traumatic Thoracolumbar Spine Fracture

2022 ◽  
Vol 19 (1) ◽  
pp. 13-17
Author(s):  
Sandeep Gurung ◽  
Gopal Sagar DC

Introduction: Surgical treatment of thoracolumbar fracture without neurological damage has resulted in better clinical and radiological outcome than conservative treatment. Traditional open approach is associated with extensive paravertebral muscle damage and postoperative morbidity so percutaneous pedicle screw fixation is highly valuable alternatives. Aims: to evaluate the efficacy and outcome of percutaneous pedicle screw fixation in the treatment of traumatic thoracolumbar fracture without neurological deficit. Methods: This study was conducted in Nepalgunj Medical College, Nepalgunj in a time span of one year; total of 40 patients were included and treated with percutaneous pedicle screw fixation and followed up for 6months. They were evaluated clinically and radiologically. Results: 40 patients with thoracolumbar fractures were managed with percutaneous pedicle screw fixation with a mean operative time of 77.30 min and intraoperative blood loss was 88.38ml. There was significant improvement in cobb’s angle (mean difference 13.92 degree), vertebral body height loss (mean difference 37.7%) and visual analogue scale (mean difference 3.55) postoperatively. These improvements remained statically significant at 6months follow up. Conclusion: Percutaneous pedicle screw fixation is safe, valid and effective treatment of thoracolumbar fracture without neurological deficit.

2021 ◽  
Vol 9 ◽  
pp. 2050313X2098779
Author(s):  
Shota Miyoshi ◽  
Tadao Morino ◽  
Haruhiko Takeda ◽  
Hiroshi Nakata ◽  
Masayuki Hino ◽  
...  

A 74-year-old man developed bilateral lower limb spastic paresis. He was diagnosed with thoracic spondylotic myelopathy presumably caused by mechanical stress that was generated in the intervertebral space (T1-T2) between a vertebral bone bridge (C5-T1) due to diffuse idiopathic skeletal hyperostosis after anterior fixation of the lower cervical spine and a vertebral bone bridge (T2-T7) due to diffuse idiopathic skeletal hyperostosis in the upper thoracic spine. Treatment included posterior decompression (T1-T2 laminectomy) and percutaneous pedicle screw fixation at the C7-T4 level. Six months after surgery, the patient could walk with a cane, and the vertebral bodies T1-T2 were bridged without bone grafting. For thoracic spondylotic myelopathy associated with diffuse idiopathic skeletal hyperostosis, decompression and percutaneous pedicle screw fixation are effective therapies.


2016 ◽  
Vol 02 (04) ◽  
pp. e131-e138 ◽  
Author(s):  
Nitin Agarwal ◽  
Phillip Choi ◽  
Raymond Sekula

Introduction Traumatic thoracolumbar burst fracture is a common pathology without a clear consensus on best treatment approach. Minimally invasive approaches are being investigated due to potential benefits in recovery time and morbidity. We examine long-term resolution of symptoms of traumatic thoracolumbar burst fractures treated with percutaneous posterior pedicle screw fixation. Methods Retrospective clinical review of seven patients with spinal trauma who presented with thoracolumbar burst fracture from July 2012 to April 2013 and were treated with percutaneous pedicle screw fixation. Electronic patient charts and radiographic imaging were reviewed for initial presentation, fracture characteristics, operative treatment, and postoperative course. Results The patients had a median age of 29 years (range 18 to 57), and 57% were men. The median Thoracolumbar Injury Classification and Severity Scale score was 4 (range 2 to 9). All patients had proper screw placement and uneventful postoperative courses given the severity of their individual traumas. Five of seven patients were reached for long-term follow-up of greater than 28 months. Six of seven patients had excellent pain control and stability at their last follow-up. One patient required revision surgery for noncatastrophic hardware failure. Conclusion Percutaneous pedicle screw fixation for the treatment of unstable thoracolumbar burst fracture may provide patients with durable benefits and warrants further investigation.


2018 ◽  
Vol 16 (4) ◽  
pp. E121-E121 ◽  
Author(s):  
Corey T Walker ◽  
Jakub Godzik ◽  
David S Xu ◽  
Nicholas Theodore ◽  
Juan S Uribe ◽  
...  

Abstract Lateral interbody fusion has distinct advantages over traditional posterior approaches. When adjunctive percutaneous pedicle screw fixation is required, placement from the lateral decubitus position theoretically increases safety and improves operative efficiency by obviating the need for repositioning. However, safe cannulation of the contralateral, down-side pedicles remains technically challenging and often prohibitive. In this video, we present the case of a 59-yr-old man with refractory back pain and bilateral lower extremity radiculopathy that was worse on the left than right side. The patient provided written informed consent before undergoing treatment. We performed minimally invasive single-position lateral interbody fusion with robotic (ExcelsiusGPS, Globus Medical Inc, Audubon, Pennsylvania) bilateral percutaneous pedicle screw fixation for the treatment of asymmetric disc degeneration, dynamic instability, and left paracentral disc herniation with corresponding stenosis at the L3-4 level. A left-sided minimally invasive transpsoas lateral interbody graft was placed with fluoroscopic guidance. Without changing the position of the patient or breaking the sterile field, an intraoperative cone-beam computed tomography image was obtained for navigational screw placement with stereotactic trackers in the iliac spine. Screw trajectories were planned using the robotic navigation software and were placed percutaneously in the bilateral L3 and L4 pedicles using the robotic arm. Concomitant lateral fluoroscopy may be used if desired to ensure the fidelity of the robotic guidance. The patient recovered well postoperatively and was discharged home within 36 h, without complication. Single-position lateral interbody fusion and percutaneous pedicle screw fixation can be accomplished using robotic-assisted navigation and pedicle screw placement. Used with permission from Barrow Neurological Institute.


Sign in / Sign up

Export Citation Format

Share Document