scholarly journals Geology and sedimentary environment of the Surma Group of rocks, Bandarban anticline, Bandarban, Bangladesh

2021 ◽  
Vol 62 ◽  
pp. 88-106
Author(s):  
Md. Masidul Haque ◽  
Mrinal Kanti Roy

The study illustrates the effect of tectonics, climate, and relative sea-level change on the depositional process of the Miocene Bhuban and Boka Bil Formation of Bengal Basin. Outcrop sediments of five transverse sections exposed along the axial zone of Bandarban anticline were studied. Twelve lithofacies such as Gm, Gms, Sm, ST, Sp, Sr, Sl, Sf, Sll, Fw, Fl and Fm have been identified within the successions and grouped into (i) turbidite generated, (ii) outer fan distal lobe basin plain and (iii) tide-influenced facies association. The analyses reveal that the Bhuban Formation was turbidite- generated that deposited below the continental shelf-slope environment. The Lower Bhuban Member consists of gray to brownish-gray calcareous sandstone with shale deposited under the channelized lobe of submarine fan. The Middle Bhuban Member dominated by black shale-siltstone deposited in distal turbidite lobe due to change the flow regime. The Upper Bhuban Member consists of yellow to yellowish gray, coarse to medium-grained sandstone-siltstone with black shale that deposited under channelized to nonchannelized lobes of submarine fan. The increasing sedimentation during the formation of the Upper Bhuban Member can be caused by increased the intensity of the Asian Monsoon that carried huge sediment from the Himalaya. The Boka Bil Formation was deposited under estuary to tidal flat environment. The area was uplifted during and/or after subduction of the Indian Plate beneath the Burmese Plate. The monsoonal intensity enhances sedimentation that moved prograding delta towards the south. These processes shifted depositional environment from continental shelf-slope to marginal shallow marine during deposition of the Boka Bil Formation. The continental slope aligned east-west direction and sediments likely derived from the Himalaya and Trans-Himalaya in the present geographical setup during deposition of the sediments.

2003 ◽  
Vol 15 (1) ◽  
pp. 41-46 ◽  
Author(s):  
ROBIN ROBERTSON ◽  
AIKE BECKMANN ◽  
HARTMUT HELLMER

In certain regions of the Southern Ocean, tidal energy is believed to foster the mixing of different water masses, which eventually contribute to the formation of deep and bottom waters. The Ross Sea is one of the major ventilation sites of the global ocean abyss and a region of sparse tidal observations. We investigated M2 tidal dynamics in the Ross Sea using a three-dimensional sigma coordinate model, the Regional Ocean Model System (ROMS). Realistic topography and hydrography from existing observational data were used with a single tidal constituent, the semi-diurnal M2. The model fields faithfully reproduced the major features of the tidal circulation and had reasonable agreement with ten existing tidal elevation observations and forty-two existing tidal current measurements. The differences were attributed primarily to topographic errors. Internal tides were generated at the continental shelf/slope break and other areas of steep topography. Strong vertical shears in the horizontal velocities occurred under and at the edges of the Ross Ice Shelf and along the continental shelf/slope break. Estimates of lead formation based on divergence of baroclinic velocities were significantly higher than those based on barotrophic velocities, reaching over 10% at the continental shelf/slope break.


Sign in / Sign up

Export Citation Format

Share Document