scholarly journals A survey on network contraflow evacuation planningproblems

2015 ◽  
Vol 3 ◽  
pp. 44-53
Author(s):  
Phanindra Prasad Bhandari ◽  
Shree Ram Khadka

Evacuation planning is becoming crucial due to an increasing number of natural and human-created disasters over last few decades. One of the efficient ways to model the evacuation situation is a network flow optimization model. This model captures most of the necessities of the evacuation planning. Moreover, dynamic network contraflow modeling is considered a potential remedy to decrease the congestion due to its direction reversal property and it addresses the challenges of evacuation route planning. However, there do not exist satisfactory analytical results to this model for general network. In this paper, it is tried to provide an annotated overview on dynamic network contraflow problems related to evacuation planning and to incorporate models and solution strategies to them developed in this field to date.

2016 ◽  
Vol 21 (1) ◽  
pp. 28-34
Author(s):  
Bam Bahadur Thapa ◽  
Shree Ram Khadka

Evacuation route planning is essential for emergency preparedness, especially in regions threatened by hurricanes, earthquake etc. The evacuees who do not travel on their own are gathered at few collection points, where they are brought on buses to take them to safe region in bus based evacuation. Bus based evacuation planning is more essential for developing country like Nepal. It is necessary to reach the destination as early as possible for bus based evacuation. The bus based evacuation planning (BEP) problem is a variant of vehicle routing problem that arises in emergency planning. The problem in this variant is that not all the evacuees can gather at the same time, elderly and handicaps may need special help like wheelchair and may need more pickup time. Another problem is that at the shelter, some people may need special care like medicine, oxygen etc. In this paper we review a mathematical model to minimize the duration of evacuation together with the dynamic programming and the branch and bound as solution procedures. Moreover, a brief report of a case study for Kathmandu has also been given.Journal of Institute of Science and TechnologyVolume 21, Issue 1, August 2016, page: 28-34


Author(s):  
A. Ramón ◽  
A. B. Rodríguez-Hidalgo ◽  
J. T. Navarro-Carrión ◽  
B. Zaragozí

2018 ◽  
Vol 13 (1) ◽  
pp. 108-116
Author(s):  
Phanindra Prasad Bhandari ◽  
Shree Ram Khadka

 An attempt of shifting as more people as possible and/or their logistics from a dangerous place to a safer place is an evacuation planning problem. Such problems modeled on network have been extensively studied and the various efficient solution procedures have been established. The solution strategies for these problems are based on source-sink path augmentation and the flow function satisfies the flow conservation at each intermediate node. Besides this, the network flow problem in which flow may not be conserved at node necessarily could also be used to model the evacuation planning problem. This paper proposes a model for maximum flow evacuation planning problem on a single-source-single-sink static network with integral arc capacities with holding capability of evacuees in the temporary shelter at intermediate nodes and extends the model into the dynamic case. Journal of the Institute of Engineering, 2017, 13(1): 108-116


2020 ◽  
Vol 9 (7) ◽  
pp. 432 ◽  
Author(s):  
Wonjun No ◽  
Junyong Choi ◽  
Sangjoon Park ◽  
David Lee

Efficient evacuation planning is important for quickly navigating people to shelters during and after an earthquake. Geographical information systems are often used to plan routes that minimize the distance people must walk to reach shelters, but this approach ignores the risk of exposure to hazards such as collapsing buildings. We demonstrate evacuation route assignment approaches that consider both hazard exposure and walking distance, by estimating building collapse hazard zones and incorporating them as travel costs when traversing road networks. We apply our methods to a scenario simulating the 2016 Gyeongju earthquake in South Korea, using the floating population distribution as estimated by a mobile phone network provider. Our results show that balanced routing would allow evacuees to avoid the riskiest districts while walking reasonable distances to open shelters. We discuss the feasibility of the model for balancing both safety and expediency in evacuation route planning.


2017 ◽  
pp. 57-72 ◽  
Author(s):  
KwangSoo Yang ◽  
Shashi Shekhar

2018 ◽  
Vol 14 (1) ◽  
pp. 107-114
Author(s):  
Phanindra Prasad Bhandari ◽  
Shree Ram Khadka

Shifting as many people as possible from disastrous area to safer area in a minimum time period in an efficient way is an evacuation planning problem (EPP). Modeling the evacuation scenarios reflecting the real world characteristics and investigation of an efficient solution to them have become a crucial due to rapidly increasing number of natural as well as human created disasters. EPPs modeled on network have been extensively studied and the various efficient solution procedures have been established where the flow function satisfies the flow conservation at each intermediate node. Besides this, the network flow problem in which flow may not be conserved at nodes necessarily could also be useful to model the evacuation planning problem. This paper proposes an efficient solution procedure for maximum flow evacuation planning problem of later kind on a single-source-single-sink dynamic network with integral arc capacities with holding capability of flow (evacuees) in the temporary shelter at intermediate nodes. Journal of the Institute of Engineering, 2018, 14(1): 107-114


Sign in / Sign up

Export Citation Format

Share Document