scholarly journals Klasifikasi Topeng Pandawa dengan SVM

Author(s):  
Andi Sanjaya ◽  
Endang Setyati ◽  
Herman Budianto

Klasifikasi merupakan tahapan tingkat lanjut dari sebuah keilmuan computer vision. Karena tujuan dari sebuah aplikasi rekognisi yaitu mengenali. Cara mengenali yaitu dengan cara klasifikasi. Banyak metode klasifikasi yang ada, namun pada penelitian ini menggunakan Support Vector Machine (SVM). SVM dipilih karena bisa mengatasi data dengan dimensi yang sangat besar tanpa mereduksi data, bekerja dengan data linier atau nonlinier dan membuat sebuah hyperplane yang memisahkan data antar kelas. Pada penelitian ini menggunakan data patung pandawa dengan lima kelas. Lima kelas terdiri dari kelas yudhistira, bima, arjuna, nakula dan sadewa. Kernel yang digunakan pada penelitian ini menggunakan  Radial Basis Function (RBF). Hasil ujicoba pada penelitian mempunya rata-rata akurasi sebesar 0,848.

Author(s):  
Dagnachew Melesew Alemayehu ◽  
Abrham Debasu Mengistu ◽  
Seffi Gebeyehu Mengistu

<p>Crop pest is an organism that creates damage on to the agriculture by feeding crops. The research focuses on four major types of crop pest which occurs on teff, wheat, sorghum, barley and maize these are Black tef beetles, Ageda korkur, Degeza and Yesinde Kish Kish. The aim of this paper is identification of the four types of agricultural crop pest using a computer vision technique. The image of crop pest were taken from Amhara regions of Ethiopia i.e. Adiet, Dejen, Gonder, Debremarkos (places where images were taken).  In this paper, artificial neural network (ANN), a hybrid of self organizing map (SOM) with Radial basis function (RBF) and a hybrid of support vector machine (SVM) with Radial basis function (RBF) are used, and also we used Otsu and Kmeans segmentation techniques. Finally we selected Kmeans techniques for segmenting crop pest. In general, the overall result showed that using kmeans segmentation in RBF and SVM perform better than using otsu method in the other algorithm and the recognition performance of the combination of RBF (Radial basis function) and SVM (support vector machine) is 93.33%.</p>


2017 ◽  
Vol 2 (2) ◽  
pp. 37
Author(s):  
Intan Raharni Wijaya

Pengolahan citra digital semakin diminati, salah satunya pada sistem biometrik. Sistem biometrik merupakan sistem dalam pengenalan berdasarkan pola atau ciri khusus yang dimiliki makhluk hidup terutama manusia. Jenis identifikasi biometrik yang umum digunakan adalah pengenalan sidik jari. Sidik jari banyak digunakan dalam kehidupan sehari-hari selama lebih dari 100 tahun karena penerimaan yang tinggi, permanen, akurat, dan keunikan. Kelebihan sidik jari tersebut disebabkan oleh minutiae yang merupakan garis atau guratan pada sidik jari yang berbeda-beda setiap individu. Klasifikasi sidik jari secara umum terbagi menjadi dua tahap yakni ekstraksi fitur serta klasifikasi fitur. <br /> <br /> Ektraksi fitur dapat dilakukan dengan cara filter seperti gabor filter dengan empat sudut orientasi yang berkisar 0, 45, 90 dan 135 derajat. Hasil dari ekstraksi ciri akan klasifikasi dengan tujutan identifikasi. Metode Support Vector Machine (SVM) dapat digunakan sebagai classifier untuk sistem biometrik sidik jari. SVM memiliki kernel trick yang berpengaruh pada akurasi yang dihasilkan. Digunakan SVM multiclass metode one-against-all dalam klasfikasi sidik jari untuk 25 kelas. Akurasi terbesar diperoleh oleh kernel Radial Basis Function (RBF) sebesar 73% untuk data awal dan 76% untuk penambahan data augmentasi


Sign in / Sign up

Export Citation Format

Share Document