scholarly journals AN EVALUATION METHOD OF DAMAGE DURATION AND CUMULATIVE DAMAGE BY FINITE RESONANCE RESPONSE ANALYSIS : Single degree of freedom system with elasto-plastic restoring force characteristics

Author(s):  
MINORU YAMADA ◽  
HIROSHI KAWAMURA ◽  
AKINORI TANI ◽  
HIDEO FUJITANI
2012 ◽  
Vol 166-169 ◽  
pp. 2177-2181
Author(s):  
Ming Qiang Sheng ◽  
Ying Liu

The cumulative damage produced by severe earthquake is significant to the structural dilapidation and collapse. Most design methods based on force or displacement can’t reflect the effect of cumulative damage. Energy-based seismic design is known as a good alternative design. At present the research on the hysteretic energy of single-degree of freedom system(SDOF) is abundant, but real buildings can only be simplified as multi-degree of freedom systems(MDOF) mostly. Therefore how to acquire suitable equivalent single-degree of freedom system(ESDOF) is a key program. In this paper 12 equivalent system schemes(ESS) have been put forward, then the ratio of hysteretic energy(RH) of 6-floors framework was calculated with 30 typical seismic waves. Based on the comparison and analysis between calculations of 3 typical ESS, by the way of envelope fitting, the expression of RH related to earthquake characteristic value a/v was established.


2020 ◽  
Vol 143 (5) ◽  
Author(s):  
Yaser Mohammadi ◽  
Keivan Ahmadi

Abstract Highly dynamic machining forces can cause excessive and unstable vibrations when industrial robots are used to perform high-force operations such as milling and drilling. Implementing appropriate optimization and control strategies to suppress vibrations during robotic machining requires accurate models of the robot’s vibration response to the machining forces generated at its tool center point (TCP). The existing models of machining vibrations assume the linearity of the structural dynamics of the robotic arm. This assumption, considering the inherent nonlinearities in the robot’s revolute joints, may cause considerable inaccuracies in predicting the extent and stability of vibrations during the process. In this article, a single degree-of-freedom (SDOF) system with the nonlinear restoring force is used to model the vibration response of a KUKA machining robot at its TCP (i.e., machining tool-tip). The experimental identification of the restoring force shows that its damping and stiffness components can be approximated using cubic models. Subsequently, the higher-order frequency response functions (HFRFs) of the SDOF system are estimated experimentally, and the parameters of the SDOF system are identified by curve fitting the resulting HFRFs. The accuracy of the presented SDOF modeling approach in capturing the nonlinearity of the TCP vibration response is verified experimentally. It is shown that the identified models accurately predict the variation of the receptance of the nonlinear system in the vicinity of well-separated peaks, but nonlinear coupling around closely spaced peaks may cause inaccuracies in the prediction of system dynamics.


2008 ◽  
Vol 400-402 ◽  
pp. 599-605
Author(s):  
Xing Wen Liang ◽  
Li Xin ◽  
Yue Sheng Tong

A performance evaluation method of high-rise buildings is presented, by means of capacity spectra method which allows for higher mode effects. The multi-degree-of-freedom system (MDOF) of each mode is transformed into equivalent single-degree-of-freedom (ESDOF) system, and the ESDOF system is supposed to be elastic perfectly plastic. In elastic range, the equivalent displacement of ESDOF system for each mode is deduced by displacement response spectra based on the natural period, and the structural lateral elastic displacement of each mode could be determined by the corresponding equivalent displacement and mode shape. In inelastic range, according to capacity spectra method, the relationships among demand curve, capacity curve and ductility coefficient are built. The structural performance under moderate or major earthquake is determined by iteration method. The paper illustrates the application of the proposed procedure with an example and attempts to prove its feasibility by nonlinear time-history analysis.


1969 ◽  
Vol 11 (6) ◽  
pp. 592-597 ◽  
Author(s):  
W. Carnegie ◽  
Z. F. Reif

The ultraharmonic resonance of order 2, excited by a centrifugal type disturbing force, is investigated for a single-degree-of-freedom system with a Duffing restoring force characteristic. The effect of gravity is taken into account. The resulting asymmetry of the restoring force is expressed in terms of the static deflection parameter. The Ritz averaging method is used for the theoretical analysis and the results are verified by means of an analogue computer.


Sign in / Sign up

Export Citation Format

Share Document