scholarly journals Geophysical logs and water-quality data collected for boreholes Kimama-1A and -1B, and a Kimama water supply well near Kimama, southern Idaho

Data Series ◽  
10.3133/ds622 ◽  
2011 ◽  
Author(s):  
Brian V. Twining ◽  
Roy C. Bartholomay
2005 ◽  
Vol 5 (2) ◽  
pp. 123-134 ◽  
Author(s):  
R. Miller ◽  
B. Whitehill ◽  
D. Deere

This paper comments on the strengths and weaknesses of different methodologies for risk assessment, appropriate for utilisation by Australian Water Utilities in risk assessment for drinking water source protection areas. It is intended that a suggested methodology be recommended as a national approach to catchment risk assessment. Catchment risk management is a process for setting priorities for protecting drinking water quality in source water areas. It is structured through a series of steps for identifying water quality hazards, assessing the threat posed, and prioritizing actions to address the threat. Water management organisations around Australia are at various stages of developing programs for catchment risk management. While much conceptual work has been done on the individual components of catchment risk management, work on these components has not previously been combined to form a management tool for source water protection. A key driver for this project has been the requirements of the National Health and Medical Research Council Framework for the Management of Drinking Water Quality (DWQMF) included in the draft 2002 Australian Drinking Water Guidelines (ADWG). The Framework outlines a quality management system of steps for the Australian water industry to follow with checks and balances to ensure water quality is protected from catchment to tap. Key steps in the Framework that relate to this project are as follows: Element 2 Assessment of the Drinking Water Supply System• Water Supply System analysis• Review of Water Quality Data• Hazard Identification and Risk Assessment Element 3 Preventive Measures for Drinking Water Quality Management• Preventive Measures and Multiple Barriers• Critical Control Points This paper provides an evaluation of the following risk assessment techniques: Hazard Analysis and Critical Control Points (HACCP); World Health Organisation Water Safety Plans; Australian Standard AS 4360; and The Australian Drinking Water Guidelines – Drinking Water Quality Management Framework. These methods were selected for assessment in this report as they provided coverage of the different approaches being used across Australia by water utilities of varying: scale of water management organisation; types of water supply system management; and land use and activity-based risks in the catchment area of the source. Initially, different risk assessment methodologies were identified and reviewed. Then examples of applications of those methods were assessed, based on several key water utilities across Australia and overseas. Strengths and weaknesses of each approach were identified. In general there seems some general grouping of types of approaches into those that: cover the full catchment-to-tap drinking water system; cover just the catchment area of the source and do not recognise downstream barriers or processes; use water quality data or land use risks as a key driving component; and are based primarily on the hazard whilst others are based on a hazardous event. It is considered that an initial process of screening water quality data is very valuable in determining key water quality issues and guiding the risk assessment, and to the overall understanding of the catchment and water source area, allowing consistency with the intentions behind the ADWG DWQM Framework. As such, it is suggested that the recommended national risk assessment approach has two key introductory steps: initial screening of key issues via water quality data, and land use or activity scenario and event-based HACCP-style risk assessment. In addition, the importance of recognising the roles that uncertainty and bias plays in risk assessments was highlighted. As such it was deemed necessary to develop and integrate uncertainty guidelines for information used in the risk assessment process. A hybrid risk assessment methodology was developed, based on the HACCP approach, but with some key additions and modifications to make it applicable to varying catchment risks, water supply operation needs and environmental management processes.


2020 ◽  
Vol 58 (5A) ◽  
pp. 85
Author(s):  
Thuy Chau To

Water Quality Index (WQI) is a dimensional number that aggregates information from many water quality parameters according to a defined method. WQI is accepted as an efficient tool for water quality management. In this study, WQI of Saigon river for public water supply was calculated from nine water quality parameters including pH, suspended solids (SS), dissolved oxygen (DO), chemical oxygen demand (COD), nitrite, ammonia, phosphate, total dissolved iron and total coliform based on water quality data obtained monthly from January 2016 to December 2019 at three sampling sites. The results showed that most of WQI values belonged to class III (medium water quality with the WQIs of 35 – 64) and class IV (poor water quality with the WQIs of 11 – 34) and a deteriorating trend was observed from upstream to downstream of Saigon river. The river water quality could not be used for public water supply.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1766
Author(s):  
Mario Maiolo ◽  
Daniela Pantusa

Vulnerability of drinking water supply systems (DWSSs) depends on different factors such as failures, loss of security, man-made threats, and the change and deterioration of supply-water quality. Currently, the lifespan of several DWSSs worldwide has been exceeded, exasperating these issues. The monitoring activity and the transparency of information on water availability and quality are becoming increasingly important in accordance with the national regulations and standards, and with guidelines of the World Health Organization (WHO). These activities can be considered as support and guidance tools for identifying health-related risks, for building a safe management of drinking water supply systems, and for improved user confidence in the consumption of tap water. In this context, in the present work an analysis of the quality monitoring data of DWSSs was carried out using multivariate techniques. The analysis considered several chemical–physical parameters collected in the period 2013–2020 for some DWSSs in the Emilia-Romagna region, Italy. Principal component analysis (PCA) and cluster analysis (CA) methods were used to process and reduce the dimensionality of the data, to highlight the parameters that have the greatest influence on the qualitative state of the supplied water and to identify clusters.


2011 ◽  
Vol 6 (4) ◽  
Author(s):  
M. H. Lim ◽  
Y. H. Leong ◽  
K. N. Tiew ◽  
Harry Seah

Increasing water demand due to socioeconomic developments and reducing fresh water sources caused by pollution and global climate change which alters the hydrologic cycle, have imposed severe water stress to many countries in the world. Singapore was among the first cities in the world to harvest stormwater from urban catchments to supplement its water supply. Strategic water resource policies with holistic, well coordinated land use and integrated catchment management were the prerequisites for stormwater harvesting. Water sampling campaigns and evaluation of past 20 years’ water quality data of the stormwater reservoirs showed that the pollutant loads to the receiving reservoirs are very low compared to the stormwater pollutant data reported by Makepeace et al. (1995) who reviewed the past 25 years’ international literature; and that the water quality of the stormwater reservoirs is good and comparable with a protected upland reservoir, and do not pose any significant health risks. The paper concluded that with effective pollutant source management, urban stormwater harvesting is a feasible means to supplement the water supply in cities with high rainfall.


Sign in / Sign up

Export Citation Format

Share Document