scholarly journals Methods for monitoring the effects of grazing management on bank erosion and channel morphology, Fever River, Pioneer Farm, Wisconsin, 2004

Fact Sheet ◽  
2005 ◽  
Author(s):  
Marie C. Peppler ◽  
Faith A. Fitzpatrick
2014 ◽  
Vol 36 (1) ◽  
pp. 67 ◽  
Author(s):  
Rebecca Bartley ◽  
Jeff P. Corfield ◽  
Aaron A. Hawdon ◽  
Anne E. Kinsey-Henderson ◽  
Brett N. Abbott ◽  
...  

Excess sediments from agricultural areas are having a detrimental impact on the Great Barrier Reef, and threaten the long-term viability of rangeland grazing. Changes to grazing management have been promoted as a mechanism for reducing excess sediment loss from grazed rangelands. This paper summarises the results of a 10-year study (2002–11) on a property in the Burdekin catchment that investigated the role of reduced stocking rates and rotational wet season resting on hill-slope and catchment runoff and sediment yields. Ground cover and pasture biomass were evaluated using on-ground surveys and remote sensing. During this study, average ground cover increased from ~35 to ~80% but pasture biomass was low due to the dominance of Bothriochloa pertusa (77% of composition). The percentage of deep-rooted perennial species increased from ~7% of pasture composition in 2002 to ~15% in 2011. This is still considerably lower than the percentage that occupied this property in 1979 (~78%). The increased ground cover resulted in progressively lower hill-slope runoff coefficients for the first event in each wet season, but annual catchment runoff did not respond significantly to the increasing ground cover during the study. Hill-slope and catchment sediment concentrations did decline with the increased ground cover, yet catchment sediment yields increased proportionally to annual runoff due to the contribution of sub-surface (scald, gully and bank) erosion. This study has demonstrated that changes to grazing management can reduce sediment concentrations leaving B. pertusa-dominated pastures, as B. pertusa is an effective controller of surface erosion. To further reduce the runoff that is fuelling gully and bank erosion, the proportion of deep-rooted native perennial grasses needs to be increased. It is argued that more than 10 years will be required to restore healthy eco-hydrological function to these previously degraded and low productivity rangelands. Even longer timescales will be needed to meet current targets for water quality.


2006 ◽  
Author(s):  
J Ardila ◽  
A Men√©ndez ◽  
C Laciana ◽  
A Sfriso ◽  
P García

2014 ◽  
Vol 36 (3) ◽  
pp. 311
Author(s):  
Rebecca Bartley ◽  
Jeff P. Corfield ◽  
Aaron A. Hawdon ◽  
Anne E. Kinsey-Henderson ◽  
Brett N. Abbott ◽  
...  

Excess sediments from agricultural areas are having a detrimental impact on the Great Barrier Reef, and threaten the long-term viability of rangeland grazing. Changes to grazing management have been promoted as a mechanism for reducing excess sediment loss from grazed rangelands. This paper summarises the results of a 10-year study (2002–11) on a property in the Burdekin catchment that investigated the role of reduced stocking rates and rotational wet season resting on hill-slope and catchment runoff and sediment yields. Ground cover and pasture biomass were evaluated using on-ground surveys and remote sensing. During this study, average ground cover increased from ~35 to ~80% but pasture biomass was low due to the dominance of Bothriochloa pertusa (77% of composition). The percentage of deep-rooted perennial species increased from ~7% of pasture composition in 2002 to ~15% in 2011. This is still considerably lower than the percentage that occupied this property in 1979 (~78%). The increased ground cover resulted in progressively lower hill-slope runoff coefficients for the first event in each wet season, but annual catchment runoff did not respond significantly to the increasing ground cover during the study. Hill-slope and catchment sediment concentrations did decline with the increased ground cover, yet catchment sediment yields increased proportionally to annual runoff due to the contribution of sub-surface (scald, gully and bank) erosion. This study has demonstrated that changes to grazing management can reduce sediment concentrations leaving B. pertusa-dominated pastures, as B. pertusa is an effective controller of surface erosion. To further reduce the runoff that is fuelling gully and bank erosion, the proportion of deep-rooted native perennial grasses needs to be increased. It is argued that more than 10 years will be required to restore healthy eco-hydrological function to these previously degraded and low productivity rangelands. Even longer timescales will be needed to meet current targets for water quality.


2008 ◽  
Author(s):  
Mathew M. Haan ◽  
James R. Russell ◽  
John L. Kovar ◽  
Daniel G. Morrical ◽  
Daryl R. Strohbehn

2007 ◽  
Author(s):  
Matthew M. Haan ◽  
James R. Russell ◽  
John Kovar ◽  
Shelly Nellesen ◽  
Daniel G. Morrical ◽  
...  

2011 ◽  
Vol 91 (3) ◽  
pp. 385-395 ◽  
Author(s):  
Shelly Nellesen ◽  
John Kovar ◽  
Mathew Haan ◽  
James Russell

Author(s):  
J. Hodgson

Recent assessments of the relative importance of stocking rate. stocking policy and grazing management on the output from pastoral systems are used as a starting point to argue the need for objective pasture assessments to aid control of livestock enterprises to meet production targets. Variations in stocking rates, stocking policy and other management practices all provide alternative means of control of pasture conditions which are the major determinants of pasture and animal performance. Understanding of the influence of pasture conditions on systems performance should provide a better basis for management control and for Communication between farmers, extension officers and researchers. Keywords: Stocking rate, pasture condition, pasture cover


2015 ◽  
Vol 77 ◽  
pp. 29-34 ◽  
Author(s):  
P.C. Beukes ◽  
S. Mccarthy ◽  
C.M. Wims ◽  
A.J. Romera

Paddock selection is an important component of grazing management and is based on either some estimate of pasture mass (cover) or the interval since last grazing for each paddock. Obtaining estimates of cover to guide grazing management can be a time consuming task. A value proposition could assist farmers in deciding whether to invest resources in obtaining such information. A farm-scale simulation exercise was designed to estimate the effect of three levels of knowledge of individual paddock cover on profitability: 1) "perfect knowledge", where cover per paddock is known with perfect accuracy, 2) "imperfect knowledge", where cover per paddock is estimated with an average error of 15%, 3) "low knowledge", where cover is not known, and paddocks are selected based on longest time since last grazing. Grazing management based on imperfect knowledge increased farm operating profit by approximately $385/ha compared with low knowledge, while perfect knowledge added a further $140/ha. The main driver of these results is the level of accuracy in daily feed allocation, which increases with improving knowledge of pasture availability. This allows feed supply and demand to be better matched, resulting in less incidence of under- and over-feeding, higher milk production, and more optimal post-grazing residuals to maximise pasture regrowth. Keywords: modelling, paddock selection, pasture cover


Sign in / Sign up

Export Citation Format

Share Document