Geologic map showing total thickness of coal in the north half of the Powder River basin, southeastern Montana and northeastern Wyoming

1991 ◽  
2019 ◽  
Vol 56 (3) ◽  
pp. 247-266
Author(s):  
Ian Anderson ◽  
David H. Malone ◽  
John Craddock

The lower Eocene Wasatch Formation is more than 1500 m thick in the Powder River Basin of Wyoming. The Wasatch is a Laramide synorgenic deposit that consists of paludal and lacustrine mudstone, fluvial sandstone, and coal. U-Pb geochronologic data on detrital zircons were gathered for a sandstone unit in the middle part of the succession. The Wasatch was collected along Interstate 90 just west of the Powder River, which is about 50 km east of the Bighorn Mountain front. The sandstone is lenticular in geometry and consists of arkosic arenite and wacke. The detrital zircon age spectrum ranged (n=99) from 1433-2957 Ma in age, and consisted of more than 95% Archean age grains, with an age peak of about 2900 Ma. Three populations of Archean ages are evident: 2886.6±10 Ma (24%), 2906.6±8.4 Ma (56%) and 2934.1±6.6 Ma (20%; all results 2 sigma). These ages are consistent with the age of Archean rocks exposed in the northern part of the range. The sparse Proterozoic grains were likely derived from the recycling of Cambrian and Carboniferous strata. These sands were transported to the Powder River Basin through the alluvial fans adjacent to the Piney Creek thrust. Drainage continued to the north through the basin and eventually into the Ancestral Missouri River and Gulf of Mexico. The provenance of the Wasatch is distinct from coeval Tatman and Willwood strata in the Bighorn and Absaroka basins, which were derived from distal source (>500 km) areas in the Sevier Highlands of Idaho and the Laramide Beartooth and Tobacco Root uplifts. Why the Bighorn Mountains shed abundant Eocene strata only to the east and not to the west remains enigmatic, and merits further study.


2018 ◽  
Vol 10 (2) ◽  
pp. 1
Author(s):  
Eric Clausen

The dearth of scientific literature in which specific erosional landform origins are determined is an example of what Thomas Kuhn considered a scientific crisis. Scientific crises arise when scientists following their discipline’s established paradigm’s rules, or doing what Kuhn calls normal science, cannot explain observed evidence. Scientific crises are resolved in one of three ways. Normal science may eventually explain the evidence and normal science returns, the unsolved problems may be identified and labeled and left for future scientists to solve, or a new paradigm may emerge with an ensuing battle over its acceptance. To succeed any new paradigm must demonstrate its ability to explain the previously unexplained evidence and also open up new research opportunities. During the 20th century’s first half regional geomorphologists abiding by their discipline’s paradigm rules unsuccessfully tried to explain origins of numerous erosional landforms, such as drainage divides and erosional escarpments. Their failures eventually caused the regional geomorphology discipline, at least that part of the discipline concerned with determining specific erosional landform origins, to almost completely disappear. A new and fundamentally different geomorphology paradigm that requires massive southeast-oriented continental ice sheet melt-water floods to have flowed across the Powder River Basin has the ability to explain specific erosional landform origins and is demonstrated here by using detailed topographic map evidence to show how large southeast-oriented floods eroded the Powder River Basin’s Belle Fourche River-Cheyenne River drainage divide segment, eroded through valleys now crossing that drainage divide segment, eroded the Powder River Basin’s Belle Fourche River valley, established Belle Fourche and Cheyenne River Powder River Basin tributary valley orientations, and eroded the north-facing Pine Ridge Escarpment. The success of this and other similar new paradigm demonstrations suggest many if not all specific erosional landform origins can be determined.


Sign in / Sign up

Export Citation Format

Share Document