scholarly journals Oblique map of Yosemite Valley, Yosemite National Park, central Sierra Nevada, California

10.3133/i2149 ◽  
1991 ◽  

Fire Ecology ◽  
2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Jan W. van Wagtendonk ◽  
Peggy E. Moore ◽  
Julie L. Yee ◽  
James A. Lutz

Abstract Background The effects of climate on plant species ranges are well appreciated, but the effects of other processes, such as fire, on plant species distribution are less well understood. We used a dataset of 561 plots 0.1 ha in size located throughout Yosemite National Park, in the Sierra Nevada of California, USA, to determine the joint effects of fire and climate on woody plant species. We analyzed the effect of climate (annual actual evapotranspiration [AET], climatic water deficit [Deficit]) and fire characteristics (occurrence [BURN] for all plots, fire return interval departure [FRID] for unburned plots, and severity of the most severe fire [dNBR]) on the distribution of woody plant species. Results Of 43 species that were present on at least two plots, 38 species occurred on five or more plots. Of those 38 species, models for the distribution of 13 species (34%) were significantly improved by including the variable for fire occurrence (BURN). Models for the distribution of 10 species (26%) were significantly improved by including FRID, and two species (5%) were improved by including dNBR. Species for which distribution models were improved by inclusion of fire variables included some of the most areally extensive woody plants. Species and ecological zones were aligned along an AET-Deficit gradient from cool and moist to hot and dry conditions. Conclusions In fire-frequent ecosystems, such as those in most of western North America, species distribution models were improved by including variables related to fire. Models for changing species distributions would also be improved by considering potential changes to the fire regime.



Data Series ◽  
2020 ◽  
Author(s):  
Brian D. Collins ◽  
Federica Sandrone ◽  
Laurent Gastaldo ◽  
Greg M. Stock ◽  
Michel Jaboyedoff


2019 ◽  
Vol 22 (2) ◽  
pp. 617-626 ◽  
Author(s):  
Colleen Kamoroff ◽  
Ninette Daniele ◽  
Robert L. Grasso ◽  
Rebecca Rising ◽  
Travis Espinoza ◽  
...  

Abstract Invasive alien species are a major threat to freshwater ecosystems, and American bullfrogs are among the world’s 100 most prominent aquatic invasive species causing negative direct and indirect effect on native aquatic fauna worldwide. Bullfrogs were intentionally introduced into Yosemite Valley, Yosemite National Park in the 1950s where they became well established in the subsequent years. Starting in 2005, the National Park Service (NPS) began bullfrog removal, targeting various life stages using hand, net, and spear techniques. Starting in 2015, the NPS conducted environmental DNA (eDNA) surveys and deployed audio recordings devices to ensure adequate detection of bullfrogs. During the first year of cencerted effort in the Valley in 2005, the NPS removed 86% of all recorded bullfrog. The subsequent decade was spent searching for individuals with lower return on effort. In 2012, the NPS removed the last observed signs of bullfrog breeding, and the last observed bullfrog in 2019. Following removal of the breeding bullfrog population, the NPS began restoration projects for species of special concern. The NPS introduced the federally threatened California red-legged frogs (Rana draytonii) into Yosemite Valley beginning in 2016. This is the first published successful eradication of bullfrogs on a landscape level. National Parks and Monuments often provide refuges for imperiled wildlife and should be managed to remove invasive species. Our work highlights effective bullfrog removal is obtainable and can lead to local recovery of endangered species.



2011 ◽  
Vol 20 (2) ◽  
pp. 223 ◽  
Author(s):  
Andrea E. Thode ◽  
Jan W. van Wagtendonk ◽  
Jay D. Miller ◽  
James F. Quinn

This paper quantifies current fire severity distributions for 19 different fire-regime types in Yosemite National Park, California, USA. Landsat Thematic Mapper remote sensing data are used to map burn severity for 99 fires (cumulatively over 97 000 ha) that burned in Yosemite over a 20-year period. These maps are used to quantify the frequency distributions of fire severity by fire-regime type. A classification is created for the resultant distributions and they are discussed within the context of four vegetation zones: the foothill shrub and woodland zone; the lower montane forest zone; the upper montane forest zone and the subalpine forest zone. The severity distributions can form a building block from which to discuss current fire regimes across the Sierra Nevada in California. This work establishes a framework for comparing the effects of current fires on our landscapes with our notions of how fires historically burned, and how current fire severity distributions differ from our desired future conditions. As this process is refined, a new set of information will be available to researchers and land managers to help understand how fire regimes have changed from the past and how we might attempt to manage them in the future.



2021 ◽  
Vol 27 (4) ◽  
pp. 395-407
Author(s):  
Christopher J. Pluhar ◽  
Kiersti R. Ford ◽  
Greg M. Stock ◽  
John O. Stone ◽  
Susan R. Zimmerman

ABSTRACT Yosemite National Park, California, is one of the best-documented sites of historical rockfalls and other rock slope failures; however, past work shows that this record does not capture the infrequent largest occurrences, prehistoric events orders of magnitude larger than the largest historic ones. These large prehistoric events are evident as voluminous bouldery landslide deposits, permitting volume and age quantification to better understand local volume–frequency relationships, potential triggering mechanisms, and the hazard such events might pose. The Tiltill rockslide in northern Yosemite is one such example, consisting of 2.1 × 106 m3 ± 1.6 × 106 m3 of talus (1.5 × 106 m3 original volume of rock mass) that slid across the floor of Tiltill Valley, partially damming Tiltill Creek to create a seasonal pond that drains through and around the rockslide mass. This volume and the rockslide's effective coefficient of friction, 0.47, place it near the boundary between long-runout landslides and ordinary Coulomb failure. Although the rockslide superficially appears to consist of two separate lobes, statistically indistinguishable 10Be exposure dates from eight samples indicate a single event that occurred at 13.0 ± 0.8 ka. The age of the Tiltill rockslide and its relatively low elevation compared to equilibrium line altitudes at this place and time make glacial debutressing a highly unlikely triggering mechanism. Seismic shaking associated with fault rupture along the eastern Sierra Nevada is shown to be a plausible but unverified trigger.



Sign in / Sign up

Export Citation Format

Share Document