Application of ground penetrating radar to estimate sand and gravel resources near Bow, southern New Hampshire

2003 ◽  
Author(s):  
Herbert A. Pierce ◽  
Joseph Duval ◽  
Dave Sutphin
Quaternary ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 9
Author(s):  
Jeffrey S. Munroe

Beach ridges constructed by pluvial Lake Clover in Elko County, Nevada during the Late Pleistocene were investigated with ground-penetrating radar (GPR). The primary objective was to document the internal architecture of these shorelines and to evaluate whether they were constructed during lake rise or fall. GPR data were collected with a ground-coupled 400-Mhz antenna and SIR-3000 controller. To constrain the morphology of the ridges, detailed topographic surveys were collected with a Topcon GTS-235W total station referenced to a second class 0 vertical survey point. GPR transects crossed the beach ridge built by Lake Clover at its highstand of 1725 m, along with seven other ridges down to the lowest beach at 1712 m. An average dielectric permittivity of 5.0, typical for dry sand and gravel, was calculated from GPR surveys in the vicinity of hand-excavations that encountered prominent stratigraphic discontinuities at known depths. Assuming this value, consistent radar signals were returned to a depth of ~3 m. Beach ridges are resolvable as ~90 to 150-cm thick stratified packages of gravelly sand overlying a prominent lakeward-dipping reflector, interpreted as the pre-lake land surface. Many ridges contain a package of sediment resembling a buried berm at their core, typically offset in a landward direction from the geomorphic crest of the beach ridge. Sequences of lakeward-dipping reflectors are resolvable beneath the beach face of all ridges. No evidence was observed to indicate that beach ridges were submerged by higher water levels after their formation. Instead, the GPR data are consistent with a model of sequential ridge formation during a monotonic lake regression.


1991 ◽  
Vol 28 (12) ◽  
pp. 1939-1947 ◽  
Author(s):  
Harry M. Jol ◽  
Derald G. Smith

Ground penetrating radar (GPR) was used in several selected deltaic sedimentary environments to better understand subsurface stratigraphy and reconstruct former depositional environments. The profiles provide high-resolution, continuous subsurface data on facies thickness and depths, orientation of major sedimentary structures, postdepositional failure planes, and depth of peat deposits.Field experiments were carried out on six river deltas. Records from four of the deltas exhibit sedimentary facies; a record from one delta shows a possible slump; and records from another delta reveal the thickness and stratigraphic relationships of peat deposits. The delta types are (i) sandy, wave influenced; (ii) sandy, immature wave influenced (steeper middle and lower shoreface); (iii) sandy braided; and (iv) gravelly, fan–foreset.In areas of limited subsurface control (stratigraphic logs from drill core, cutbank exposure, or geophysical logs), radar profiles can provide ''big picture'' perspectives of the subsurface, a view only available in laterally extensive exposures. High-resolution profiles of subsurface stratigraphy and sedimentary facies from GPR provide an opportunity for geomorphologists and sedimentologists to further advance field research. Although GPR has limited success in silt and clay, results from sand and gravel deposits often reveal detailed facies assemblages.


Sedimentology ◽  
2002 ◽  
Vol 49 (4) ◽  
pp. 789-804 ◽  
Author(s):  
Adrian Neal ◽  
Nigel I Pontee ◽  
Ken Pye ◽  
Julie Richards

Author(s):  
M. S. Sudakova ◽  
M. L. Vladov ◽  
M. R. Sadurtdinov

Within the ground penetrating radar bandwidth the medium is considered to be an ideal dielectric, which is not always true. Electromagnetic waves reflection coefficient conductivity dependence showed a significant role of the difference in conductivity in reflection strength. It was confirmed by physical modeling. Conductivity of geological media should be taken into account when solving direct and inverse problems, survey design planning, etc. Ground penetrating radar can be used to solve the problem of mapping of halocline or determine water contamination.


Sign in / Sign up

Export Citation Format

Share Document