scholarly journals Synthesis of habitat availability and carrying capacity research to support water management decisions and enhance conditions for Pacific salmon in the Willamette River, Oregon

2021 ◽  
Author(s):  
Tobias J. Kock ◽  
Russell W. Perry ◽  
Gabriel S. Hansen ◽  
James White ◽  
Laurel Stratton Garvin ◽  
...  
1984 ◽  
Vol 16 (1) ◽  
pp. 19-19
Author(s):  
V. Klemeš

Most of what is routinely labeled ‘stochastic hydrology’ does not contain any hydrology at all and could be more properly identified as the fitting of stochastic models to samples of data of hydrologic origin. T0 engage in this enterprise, no hydrologic knowledge is necessary, nor do the results contribute to hydrologic knowledge. Moreover, the bulk of the current stochastic hydrology does not appreciably enhance the quality of water management decisions-an aim which provided the original impetus for its development. It seems that the mainstream of stochastic hydrology follows in the steps of ‘dam theory’, the only difference being that while the latter has become a self-contained branch of pure probability theory, the former is on the way to becoming a branch of pure mathematical statistics.


2015 ◽  
Vol 17 (1) ◽  
pp. 195-210 ◽  
Author(s):  
Safat Sikder ◽  
Xiaodong Chen ◽  
Faisal Hossain ◽  
Jason B. Roberts ◽  
Franklin Robertson ◽  
...  

Abstract This study asks the question of whether GCMs are ready to be operationalized for streamflow forecasting in South Asian river basins, and if so, at what temporal scales and for which water management decisions are they likely to be relevant? The authors focused on the Ganges, Brahmaputra, and Meghna basins for which there is a gridded hydrologic model calibrated for the 2002–10 period. The North American Multimodel Ensemble (NMME) suite of eight GCM hindcasts was applied to generate precipitation forecasts for each month of the 1982–2012 (30 year) period at up to 6 months of lead time, which were then downscaled according to the bias-corrected statistical downscaling (BCSD) procedure to daily time steps. A global retrospective forcing dataset was used for this downscaling procedure. The study clearly revealed that a regionally consistent forcing for BCSD, which is currently unavailable for the region, is one of the primary conditions to realize reasonable skill in streamflow forecasting. In terms of relative RMSE (normalized by reference flow obtained from the global retrospective forcings used in downscaling), streamflow forecast uncertainty (RMSE) was found to be 38%–50% at monthly scale and 22%–35% at seasonal (3 monthly) scale. The Ganges River (regulated) experienced higher uncertainty than the Brahmaputra River (unregulated). In terms of anomaly correlation coefficient (ACC), the streamflow forecasting at seasonal (3 monthly) scale was found to have less uncertainty (>0.3) than at monthly scale (<0.25). The forecast skill in the Brahmaputra basin showed more improvement when the time horizon was aggregated from monthly to seasonal than the Ganges basin. Finally, the skill assessment for the individual seasons revealed that the flow forecasting using NMME data had less uncertainty during monsoon season (July–September) in the Brahmaputra basin and in postmonsoon season (October–December) in the Ganges basin. Overall, the study indicated that GCMs can have value for management decisions only at seasonal or annual water balance applications at best if appropriate historical forcings are used in downscaling. The take-home message of this study is that GCMs are not yet ready for prime-time operationalization for a wide variety of multiscale water management decisions for the Ganges and Brahmaputra River basins.


2018 ◽  
Vol 40 ◽  
pp. 01001
Author(s):  
Ellis Penning

Rivers and streams cannot be viewed without the vegetation growing in and alongside it. The riverine ecosystem is strongly organized by the presence of plants in interaction with flow and morphological processes. This creates challenges for water management, as a profound knowledge of these interactions is needed when management decisions must be made. At the same time other aspects of water management, such as societal-economic demands, might compromise the depth at which these processes can be studied and incorporated in the daily management of these systems.


2018 ◽  
Author(s):  
S Holysh ◽  
M Marchildon ◽  
P Martin ◽  
D Kassenaar ◽  
C Neville ◽  
...  

2006 ◽  
Vol 120 (2) ◽  
pp. 213 ◽  
Author(s):  
Mike W. Demarchi

Brackish marshes of the Fraser River delta provide important habitats for such high-profile animals as White Sturgeon (Acipenser transmontanus), Pacific Eulachon (Thaleichthys pacificus), Pacific salmon (Oncorhynchus spp.), Western Sandpiper (Calidris mauri), and Lesser Snow Goose (Chen caerulescens caerulescens), the latter comprising the “Fraser-Skagit” segment of the Wrangel Island (Russia) population. This study assessed whether the current numbers of Snow Geese are exceeding the carrying capacity of brackish marshes in the Fraser River delta. Simulation modelling predicts that those marshes are presently capable of supporting ~17,500 Snow Geese—a value that is greatly exceeded by the numbers of geese that have over-wintered there in recent years (~80,000 in 2004-2005). The Pacific Flyway Council’s target 3-y average population and segment sizes of 120,000 and 50,000 - 70,000, respectively, were set without considering the carrying capacity of natural wintering habitats, the potential impacts of too many geese on upland agriculture, or implications for hazards to civilian aircraft at Vancouver International Airport. The modelled results of the present study suggest that the Fraser River delta can sustain the current numbers of Snow Geese that stage or winter there only if those birds also forage in agricultural and refuge fields—a relatively recent phenomenon that likely bolstered the Snow Goose population. Over-use by Snow Geese can degrade the productivity and habitat quality of marshes. There is documented evidence that some key plant species (e.g., Scirpus americanus) of the brackish marshes of the Fraser River delta are well below their biomass potential (~15%), primarily because of grubbing by Snow Geese. Other species that depend on this brackish environment as well as human interests in the Fraser River delta may be adversely affected by an overabundance of Snow Geese. The future effectiveness of hunting as a primary means of population regulation is questioned.


2017 ◽  
Vol 61 (3) ◽  
pp. 347-357 ◽  
Author(s):  
Avril C. Horne ◽  
Joanna M. Szemis ◽  
J. Angus Webb ◽  
Simranjit Kaur ◽  
Michael J. Stewardson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document