Chemical character of surface waters in the central and southern Florida flood control district

1955 ◽  
Author(s):  
Eugene Brown ◽  
J.W. Crooks
2004 ◽  
Vol 14 (4) ◽  
pp. 545-550 ◽  
Author(s):  
Chris Wilson ◽  
Ed Stover ◽  
Brian Boman

Off-target deposition of pesticidal spray material is both an economic loss to the grower and a potential environmental problem in southern Florida. This study evaluated the reduction in non-target deposition of copper resulting from different approaches to spraying row-ends in typical Indian River citrus (Citrus) production systems. Using copper as a model pesticide, applications were made in a commercial citrus grove in June and July 2001. Non-target deposition on the water surface within an adjacent drainage canal, as well as on surrounding ground surfaces, was measured using Teflon spray targets. Specific row-end spraying scenarios included: 1) leaving both banks of nozzles on while turning; 2) turning the outside-facing nozzles off (leaving tree-facing nozzles on); 3) turning both banks of nozzles off at the tree trunk; and 4) turning all nozzles off at the end of the foliage of the last tree within the row. Deposition directly onto surface water contained within drainage canals was reduced significantly when nozzles were turned off at the last tree within a row, or when the outside-facing nozzles-only were turned off through the turn. Likewise, deposition was reduced on ground surfaces adjacent to the sprayer under the same scenarios. No differences were observed on ground surfaces on the opposite side of the canal. Significant reductions in direct application of agrichemicals to surface waters within Indian River citrus production groves can be achieved by turning nozzles off when turning from one tree row into the next.


1985 ◽  
Vol 6 (2) ◽  
pp. 52-58 ◽  
Author(s):  
Susan T. Bagley

AbstractThe genus Klebsiella is seemingly ubiquitous in terms of its habitat associations. Klebsiella is a common opportunistic pathogen for humans and other animals, as well as being resident or transient flora (particularly in the gastrointestinal tract). Other habitats include sewage, drinking water, soils, surface waters, industrial effluents, and vegetation. Until recently, almost all these Klebsiella have been identified as one species, ie, K. pneumoniae. However, phenotypic and genotypic studies have shown that “K. pneumoniae” actually consists of at least four species, all with distinct characteristics and habitats. General habitat associations of Klebsiella species are as follows: K. pneumoniae—humans, animals, sewage, and polluted waters and soils; K. oxytoca—frequent association with most habitats; K. terrigena— unpolluted surface waters and soils, drinking water, and vegetation; K. planticola—sewage, polluted surface waters, soils, and vegetation; and K. ozaenae/K. rhinoscleromatis—infrequently detected (primarily with humans).


Sign in / Sign up

Export Citation Format

Share Document