scholarly journals Groundwater-level change for the periods 2002–8, 2008–12, and 2008–16 in the Santa Fe Group aquifer system in the Albuquerque area, central New Mexico

Author(s):  
Andre B. Ritchie ◽  
Amy E. Galanter ◽  
Lucas T.S. Curry
2020 ◽  
Author(s):  
Pragnaditya Malakar ◽  
Abhijit Mukherjee ◽  
Soumendra N. Bhanja ◽  
Dipankar Saha ◽  
Ranjan Kumar Ray ◽  
...  

Abstract. The water and food security of South Asia is embedded in the groundwater resources of the transboundary aquifer system of Indus-Ganges-Brahmaputra-Meghna (IGBM) rivers, which has been subjected to diverse natural and anthropogenic triggers. Thus, understanding the relative importance of such triggers in groundwater level change and developing a prediction framework is essential to sustain future stress. Although a number of studies on groundwater level prediction and simulation exist in the literature, characterization of predictive performances of groundwater level modeling using a large network of ground-based observations (n = 2303) is not yet reported. To identify the spatial and depth-wise predictors influence, here, we used linear regression based dominance analysis and machine learning methods (Support Vector Machine and Artificial Neural network) on long term (1985–2015) GWLs and/or climatic variables in the parts of IGBM basin aquifers. The results from the dominance analysis show that groundwater level change is primarily influenced by abstraction and population in most of the IGBM, whereas in the Brahmaputra basin, precipitation exhibits greater influence. Our results show a large proportion of the observation wells (n > 50 % for ANN and n > 65 % for SVM) demonstrate good correlation (r > 0.6, p  0.65), and normalized root mean square error (RMSEn 


2020 ◽  
Author(s):  
Yan-Yao Lin ◽  
Shih-Jung Wang ◽  
Wen-Chi Lai

<p>Hydrological anomalies induced by the earthquakes are valuable research data to understand the hydrogeology structure. At the same time, a complete hydrogeological data is the key to the study of earthquake hydrology. In this research, we collected the anomalous hydrological data after the M<sub>w</sub> 6.4 2016 Meinong Earthquake in Taiwan. The main purpose is to know the mechanism of hydrological changes triggered by earthquake and understand the local hydrogeological characteristics in the southern Taiwan.</p><p>From the distribution of the groundwater level change in the same location but different depths of aquifer, as well as the location of the rupture and liquefaction, it could be found that the co-seismic groundwater level change is large in Chianan Plain in the northwest of the epicenter and accompanied with a lot of ruptures and liquefactions located along the Hsinhua Fault. However, the observations in several wells around the Hsinhua Fault show a different water level change pattern compared with the other wells in Chianan Plain. Actually, these wells show that the co-seismic groundwater level decreases in the deep aquifer and increase in the shallow aquifer. It is shown that the Meinong Earthquake may enhance the connectivity between different aquifers near the fault zone and produce an increased vertical pressure gradient. The anomalous hydrological phenomenon also reflected in the river flow. Based on the river flow data we collected from five stations in the Zengwun River watershed, the river flow at two stations in the upstream dose not change after earthquake. There is a little increase at the midstream station. However, a large river flow increase is observed at the downstream station. After excluding the influence of rainfall, we think that the large amount of anomalous flow is caused by the rise of the co-seismic groundwater level between the middle and downstream sections, and a large amount of liquefaction in this area can prove this hypothesis.</p><p>The hypothesis of connectivity changes between different aquifers can be verified by analyzing the tidal response of different aquifers. Many studies have used the tide analysis to obtain the aquifer permeability and compressibility, and compared the changes in the analysis results before and after the earthquake. We think that if different aquifers are vertically connected after earthquake, the tidal analysis results should show a consistent permeability. Tidal analysis is executing now and the results will be provided at conference.</p>


Sign in / Sign up

Export Citation Format

Share Document