scholarly journals Relation of specific conductance in ground water to intersection of flow paths by wells, and associated major ion and nitrate geochemistry, Barton Springs Segment of the Edwards Aquifer, Austin, Texas, 1978-2003

Author(s):  
Bradley D. Garner ◽  
Barbara Mahler
2004 ◽  
Vol 49 (3) ◽  
pp. 63-70 ◽  
Author(s):  
T.B. Spruill

Water-quality and hydrologic information were collected along ground-water flow paths from two well-drained and two poorly drained Coastal Plain settings in North Carolina to evaluate the relative effectiveness of riparian buffers in reducing discharge of nitrate to streams. At one well-drained site with a 100 m buffer, little or no effect was detected on surface-water quality by discharging ground water because extensive woody vegetation in the buffer was able to take up not only most nitrate, but also most ground water before discharging to the stream during the growing season (March-October). At the second well-drained site, ground water discharging to the stream from the side with a buffer contained about 2 mg/L of nitrate-nitrogen after passing through the bed of the stream compared to 6 mg/L in ground water discharging from the side with no buffer. In the poorly drained settings, nitrate in ground water decreased from about 6 mg/L in the recharge area to less than 0.02 mg/L downgradient from the riparian buffer. Ground water discharging from the side with no buffer contained 0.83 mg/L. Riparian buffers appear effective in reducing nitrate in ground water discharging to Coastal Plain streams.


2004 ◽  
Vol 49 (3) ◽  
pp. 47-53 ◽  
Author(s):  
L.J. Puckett

During the last two decades there has been growing interest in the capacity of riparian buffer zones to remove nitrate from ground waters moving through them. Riparian zone sediments often contain organic carbon, which favors formation of reducing conditions that can lead to removal of nitrate through denitrification. Over the past decade the National Water Quality Assessment (NAWQA) Program has investigated the transport and fate of nitrate in ground and surface waters in study areas across the United States. In these studies riparian zone efficiency in removing nitrate varied widely as a result of variations in hydrogeologic factors. These factors include (1) denitrification in the up-gradient aquifer due to the presence of organic carbon or other electron donors, (2) long residence times (>50 years) along ground-water flow paths allowing even slow reactions to completely remove nitrate, (3) dilution of nitrate enriched waters with older water having little nitrate, (4) bypassing of riparian zones due to extensive use of drains and ditches, and (5) movement of ground water along deep flow paths below reducing zones. By developing a better understanding of the hydrogeologic settings in which riparian buffer zones are likely to be inefficient we can develop improved nutrient management plans.


Ground Water ◽  
1990 ◽  
Vol 28 (4) ◽  
pp. 551-558 ◽  
Author(s):  
Steven J. Fritz ◽  
Hector J. Lopez ◽  
Michael P. Wilson

2021 ◽  
Vol 3 ◽  
Author(s):  
Elizabeth A. Bihn ◽  
Kurt J. Mangione ◽  
Bill Lyons ◽  
Annette L. Wszelaki ◽  
John J. Churey ◽  
...  

An Irrigation Water Quality Database was developed to help assess the microbiological quality of irrigation water used in fruit and vegetable production in 15 counties in New York (NY) State. Water samples from Tennessee (TN) were also included in the database. Four water quality parameters, quantified generic Escherichia coli, specific conductance, pH, and turbidity, were tested. Ground, reservoir, and running water were sampled over 2 years (2009 and 2010), covering three seasons each year (spring, summer, and fall). TN data are for all three seasons in 2010 only. Overall in NY (254 total samples), ground water had a geometric mean of 1 most probable number (MPN)/100 ml, reservoir water had a geometric mean of 8 MPN/100 ml, and running water had a geometric mean of 52 MPN/100 ml. Overall in TN (63 total samples), ground water had a geometric mean of 1 colony forming unit (CFU)/100 ml, reservoir water had a geometric mean of 5 CFU/100 ml, and running water had a geometric mean of 38 CFU/100 ml. These values are all below the 126 MPN/100 ml United States Environmental Protection Agency's Ambient Water Quality Standards (AWQS) standard for fresh water. The presence of E. coli had very weak but sometimes statistically signficiant correlatation with water specific conductance, pH, and turbidity, depending on the water source but the r-squared effect was not strong enough to make the other measurements a substitute for testing specifically for E. coli in water.


Sign in / Sign up

Export Citation Format

Share Document