scholarly journals Status of groundwater-level altitudes and long-term groundwater-level changes in the Chicot, Evangeline, and Jasper aquifers, Houston-Galveston region, Texas, 2020

Author(s):  
Christopher L. Braun ◽  
Jason K. Ramage
2021 ◽  
Author(s):  
Yutaro Shigemitsu ◽  
Kazuya Ishitsuka ◽  
Weiren Lin

<p>The 2018 northern Osaka earthquake with a magnitude 6.1 earthquake struck on June 18, 2018 in northern Osaka, causing enormous damage. SAR interferometry using satellite synthetic aperture radar (SAR) data can detect surface displacement distribution over a wide area and is effective for observing surface displacement during an earthquake. On the other hand, it is also important to observe the tendency of long-term surface displacement around active faults on a yearly basis in order to monitor the deformation at and around active faults. In this study, we used persistent scatter SAR interferometry (PS-InSAR) to clarify the recent surface displacement including before and after the 2018 northern Osaka earthquake near the Arima-Takatsuki Fault Zone and the Mt. Rokko active segment, near the epicenter of the earthquake. PS-InSAR analysis is a method that analyzes coherent pixels only, and can extract surface displacements with less noise than the conventional two-pass SAR interferometry. By using Sentinel-1 data, we expect to understand a long-term surface displacement and temporal changes in displacement pattern by comparing with the results using other satellites in previous studies. As a result of our analysis, we found that (i) ground subsidence occurred near the Mt. Rokko active segment, (ii) subsidence or eastward displacement occurred in the eastern part of the Takarazuka GNSS station, (iii) surface displacement in the wedge-shaped area located between the Arima-Takatsuki Fault Zone and the Mt. Rokko active segment is suggested to be caused by groundwater level changes, (iv) groundwater level changes may have caused surface displacement considered to be uplift in the wide area between the Ikoma Fault Zone and Uemachi Fault Zone, and (v) slip of the source fault may have caused surface displacement around the epicenter of the 2018 northern Osaka earthquake. Furthermore, we validated the estimated surface displacements by comparison with GNSS measurements and previous studies. These results suggest that surface displacement near the Arima-Takatsuki fault zone was caused by the 2018 northern Osaka earthquake. In order to reveal the mechanism of surface displacement in the vicinity of the fault, it is necessary to continue to monitor the surface displacement in this area using time-series SAR interferometry.</p><p> </p><p> </p><p>We acknowledge Sentinel-1 data provided from the European Space Agency (ESA) based on the open data policy.</p>


2020 ◽  
Author(s):  
Da Ha ◽  
Gang Zheng ◽  
Hugo A. Loáiciga ◽  
Wei Guo ◽  
Haizuo Zhou ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Feihe Kong ◽  
Jinxi Song ◽  
Russell S. Crosbie ◽  
Olga Barron ◽  
David Schafer ◽  
...  

Groundwater, the most important water resource and the largest distributed store of fresh water in the world, supports sustainability of groundwater-dependent ecosystems and resilient and sustainable economy of the future. However, groundwater level decline in many parts of world has occurred as a result of a combination of climate change, land cover change and groundwater abstraction from aquifers. This study investigates the determination of the contributions of these factors to the groundwater level changes with the HydroSight model. The unconfined superficial aquifer in the Gnangara region in Western Australia was used as a case study. It was found that rainfall dominates long-term (1992–2014) groundwater level changes and the contribution rate of rainfall reduced because the rainfall decreased over time. The mean rainfall contribution rate is 77% for climate and land cover analysis and 90% for climate and pumping analysis. Secondly, the increasing groundwater pumping activities had a significant influence on groundwater level and its mean contribution rate on groundwater level decline is -23%. The land cover changes had limited influence on long-term groundwater level changes and the contribution rate is stable over time with a mean of 2%. Results also showed spatial heterogeneity: the groundwater level changes were mainly influenced by rainfall and groundwater pumping in the southern study region, and the groundwater level changes were influenced by the combination of rainfall, land cover and groundwater pumping in the northern study region. This research will assist in developing a quantitative understanding of the influences of different factors on groundwater level changes in any aquifer in the world.


2021 ◽  
Vol 1209 (1) ◽  
pp. 012073
Author(s):  
M Červeňanská ◽  
J Mydla ◽  
A Šoltész ◽  
Z Danáčová ◽  
E Kullman

Abstract For a long-term retention of water in aquifers and its subsequent use in drier or heavier demand periods, the Managed Aquifer Recharge (MAR) techniques are studied and implemented in 4 pilot areas of the DEEPWATER-CE project. In Slovakia, the pilot study is situated in the Rye Island. A calibrated MODFLOW model is used for a prediction of groundwater level changes caused by the Recharge Dam MAR. Results of the simulations showed that the increased groundwater level caused by the realization and operation of three proposed weirs affects the volume of water infiltrated to the aquifer but does not cause the flooding of the adjacent area.


2018 ◽  
Author(s):  
Duabchi Vang ◽  
◽  
Emily M. Finger ◽  
Sarah A. Vitale
Keyword(s):  

Author(s):  
Dayou Luo ◽  
Xingping Wen ◽  
Junlong Xu ◽  
Haonan Zhang ◽  
SIHAPANYA Vongphet ◽  
...  

2013 ◽  
Vol 49 (9) ◽  
pp. 5900-5912 ◽  
Author(s):  
Alexander Y. Sun

1996 ◽  
Vol 40 ◽  
pp. 93-100
Author(s):  
Isao SHIOZAKI ◽  
Fusetsu TAKAGI ◽  
Uichiro MATSUBAYASHI ◽  
Hiromi KOJO

Sign in / Sign up

Export Citation Format

Share Document