Relation of urban land-use and dry-weather, storm, and snowmelt flow characteristics to stream-water quality, Shunganunga Creek basin, Topeka, Kansas

1987 ◽  
Author(s):  
Jong-Won Lee ◽  
Sang-Woo Lee ◽  
Kyung-Jin An ◽  
Soon-Jin Hwang ◽  
Nan-Young Kim

The extent of anthropogenic land use in watersheds determines the amount of pollutants discharged to streams. This indirectly and directly affects stream water quality and biological health. Most studies have therefore focused on ways to reduce non-point pollution sources to streams from the surrounding land use in watersheds. However, the mechanistic pathways between land use and the deterioration of stream water quality and biological assemblages remain unclear. This study estimated a structural equation model (SEM) representing the impact of agricultural and urban land use on water quality and the benthic macroinvertebrate index (BMI) using IBM AMOS in the Nam-Han river systems, South Korea. The estimated SEM showed that the percent of urban and agricultural land in the watersheds significantly affected both the water quality and the BMI of the streams. Specifically, a higher percent of urban land use had directly increased the biochemical oxygen demand (BOD) and total phosphorus (TP), and deteriorated the BMI of streams. Similarly, higher proportions of agricultural land use had also directly increased the BOD, total nitrogen (TN), and total phosphorus (TP) concentrations, and lowered the BMI of streams. In addition, it was observed that the percent of urban and agricultural land use had indirectly deteriorated the BMI through increased BOD. However, we were not able to observe any significant indirect effect of the percent of urban and agricultural land use through increased nutrients including TN and TP. These results indicate that increased urban and agricultural land use in the watersheds had directly and indirectly affected the physicochemical characteristics and benthic macroinvertebrate communities in streams. Our findings emphasize the need to develop more elaborate environmental management and restoration strategies to improve the water quality and biological status of streams.


2021 ◽  
Vol 109 ◽  
pp. 105679
Author(s):  
António Carlos Pinheiro Fernandes ◽  
Lisa Maria de Oliveira Martins ◽  
Fernando António Leal Pacheco ◽  
Luís Filipe Sanches Fernandes

2006 ◽  
Vol 174 (1-4) ◽  
pp. 161-179 ◽  
Author(s):  
T. Tsegaye ◽  
D. Sheppard ◽  
K. R. Islam ◽  
W. Tadesse ◽  
A. Atalay ◽  
...  

2006 ◽  
Vol 35 (2) ◽  
pp. 617-627 ◽  
Author(s):  
A. Hayakawa ◽  
M. Shimizu ◽  
K. P. Woli ◽  
K. Kuramochi ◽  
R. Hatano

2020 ◽  
Vol 12 (14) ◽  
pp. 5500 ◽  
Author(s):  
Yu Song ◽  
Xiaodong Song ◽  
Guofan Shao

Intense human activities and drastic land use changes in rapidly urbanized areas may cause serious water quality degradation. In this study, we explored the effects of land use on water quality from a landscape perspective. We took a rapidly urbanized area in Hangzhou City, China, as a case study, and collected stream water quality data and algae biomass in a field campaign. The results showed that built-up lands had negative effects on water quality and were the primary cause of stream water pollution. The concentration of total phosphorus significantly correlated with the areas of residential, industrial, road, and urban greenspace, and the concentration of chlorophyll a also significantly correlated with the areas of these land uses, except residential land. At a landscape level, the correlation analysis showed that the landscape indices, e.g., dominance, shape complexity, fragmentation, aggregation, and diversity, all had significant correlations with water quality parameters. From the perspective of land use, the redundancy analysis results showed that the percentages of variation in water quality explained by the built-up, forest and wetland, cropland, and bareland decreased in turn. The spatial composition of the built-up lands was the main factor causing stream water pollution, while the shape complexities of the forest and wetland patches were negatively correlated with stream water pollution.


<em>Abstract.</em>—Ecologists recognize that surrounding land use can influence the structure and function of aquatic ecosystems, but few studies have explicitly examined the relative effects of different types of land use on stream ecosystems. We quantified the relationships between different land uses (forested, urban, agricultural with or without riparian buffers) and stream physicochemical variables and resident fish assemblages in 21 southwestern Michigan streams. These streams were located within a single basin (Kalamazoo River) and ecoregion to minimize differences in natural landscape conditions. Streams responded to a gradient of land use, with forested streams having the least degraded water quality, physical habitat, and fish assemblages, and agricultural streams lacking buffers being the most degraded. Urban and agricultural streams with buffers displayed characteristics intermediate to forested and agricultural streams lacking buffers. In general, habitat complexity and water quality declined across this land-use gradient from forested to agricultural streams, whereas fish density, richness, and dominance by tolerant species increased along the land-use gradient. Although urban streams had lower percentages of altered land use (i.e., <40% urban) in their catchments compared to agricultural streams (i.e., >50% agriculture), both land uses appeared to have similar detrimental effects on streams suggesting higher per unit area impacts of urbanization on streams. The presence of forested riparian buffers along agricultural streams increased the complexity of instream habitat, but resulted in few benefits to fish assemblages, suggesting that stream water quality in altered landscapes may be constraining fish assemblages more than physical habitat.


Sign in / Sign up

Export Citation Format

Share Document