scholarly journals Machine Translation System for the Industry Domain and Croatian Language

2020 ◽  
Vol 44 (1) ◽  
pp. 33-50
Author(s):  
Ivan Dunđer

Machine translation is increasingly becoming a hot research topic in information and communication sciences, computer science and computational linguistics, due to the fact that it enables communication and transferring of meaning across different languages. As the Croatian language can be considered low-resourced in terms of available services and technology, development of new domain-specific machine translation systems is important, especially due to raised interest and needs of industry, academia and everyday users. Machine translation is not perfect, but it is crucial to assure acceptable quality, which is purpose-dependent. In this research, different statistical machine translation systems were built – but one system utilized domain adaptation in particular, with the intention of boosting the output of machine translation. Afterwards, extensive evaluation has been performed – in form of applying several automatic quality metrics and human evaluation with focus on various aspects. Evaluation is done in order to assess the quality of specific machine-translated text.

2016 ◽  
Vol 5 (4) ◽  
pp. 51-66 ◽  
Author(s):  
Krzysztof Wolk ◽  
Krzysztof P. Marasek

The quality of machine translation is rapidly evolving. Today one can find several machine translation systems on the web that provide reasonable translations, although the systems are not perfect. In some specific domains, the quality may decrease. A recently proposed approach to this domain is neural machine translation. It aims at building a jointly-tuned single neural network that maximizes translation performance, a very different approach from traditional statistical machine translation. Recently proposed neural machine translation models often belong to the encoder-decoder family in which a source sentence is encoded into a fixed length vector that is, in turn, decoded to generate a translation. The present research examines the effects of different training methods on a Polish-English Machine Translation system used for medical data. The European Medicines Agency parallel text corpus was used as the basis for training of neural and statistical network-based translation systems. A comparison and implementation of a medical translator is the main focus of our experiments.


Author(s):  
Anna Fernández Torné ◽  
Anna Matamala

This article aims to compare three machine translation systems with a focus on human evaluation. The systems under analysis are a domain-adapted statistical machine translation system, a domain-adapted neural machine translation system and a generic machine translation system. The comparison is carried out on translation from Spanish into German with industrial documentation of machine tool components and processes. The focus is on the human evaluation of the machine translation output, specifically on: fluency, adequacy and ranking at the segment level; fluency, adequacy, need for post-editing, ease of post-editing, and mental effort required in post-editing at the document level; productivity (post-editing speed and post-editing effort) and attitudes. Emphasis is placed on human factors in the evaluation process.


Author(s):  
Ignatius Ikechukwu Ayogu ◽  
Adebayo Olusola Adetunmbi ◽  
Bolanle Adefowoke Ojokoh

The global demand for translation and translation tools currently surpasses the capacity of available solutions. Besides, there is no one-solution-fits-all, off-the-shelf solution for all languages. Thus, the need and urgency to increase the scale of research for the development of translation tools and devices continue to grow, especially for languages suffering under the pressure of globalisation. This paper discusses our experiments on translation systems between English and two Nigerian languages: Igbo and Yorùbá. The study is setup to build parallel corpora, train and experiment English-to-Igbo, (), English-to-Yorùbá, () and Igbo-to-Yorùbá, () phrase-based statistical machine translation systems. The systems were trained on parallel corpora that were created for each language pair using text from the religious domain in the course of this research. A BLEU score of 30.04, 29.01 and 18.72 respectively was recorded for the English-to-Igbo, English-to-Yorùbá and Igbo-to-Yorùbá MT systems. An error analysis of the systems’ outputs was conducted using a linguistically motivated MT error analysis approach and it showed that errors occurred mostly at the lexical, grammatical and semantic levels. While the study reveals the potentials of our corpora, it also shows that the size of the corpora is yet an issue that requires further attention. Thus an important target in the immediate future is to increase the quantity and quality of the data.  


2017 ◽  
Vol 5 ◽  
pp. 487-500
Author(s):  
Benjamin Marie ◽  
Atsushi Fujita

We present a new framework to induce an in-domain phrase table from in-domain monolingual data that can be used to adapt a general-domain statistical machine translation system to the targeted domain. Our method first compiles sets of phrases in source and target languages separately and generates candidate phrase pairs by taking the Cartesian product of the two phrase sets. It then computes inexpensive features for each candidate phrase pair and filters them using a supervised classifier in order to induce an in-domain phrase table. We experimented on the language pair English–French, both translation directions, in two domains and obtained consistently better results than a strong baseline system that uses an in-domain bilingual lexicon. We also conducted an error analysis that showed the induced phrase tables proposed useful translations, especially for words and phrases unseen in the parallel data used to train the general-domain baseline system.


2020 ◽  
pp. 1137-1154
Author(s):  
Krzysztof Wolk ◽  
Krzysztof P. Marasek

The quality of machine translation is rapidly evolving. Today one can find several machine translation systems on the web that provide reasonable translations, although the systems are not perfect. In some specific domains, the quality may decrease. A recently proposed approach to this domain is neural machine translation. It aims at building a jointly-tuned single neural network that maximizes translation performance, a very different approach from traditional statistical machine translation. Recently proposed neural machine translation models often belong to the encoder-decoder family in which a source sentence is encoded into a fixed length vector that is, in turn, decoded to generate a translation. The present research examines the effects of different training methods on a Polish-English Machine Translation system used for medical data. The European Medicines Agency parallel text corpus was used as the basis for training of neural and statistical network-based translation systems. A comparison and implementation of a medical translator is the main focus of our experiments.


2016 ◽  
Vol 1 (1) ◽  
pp. 45-49
Author(s):  
Avinash Singh ◽  
Asmeet Kour ◽  
Shubhnandan S. Jamwal

The objective behind this paper is to analyze the English-Dogri parallel corpus translation. Machine translation is the translation from one language into another language. Machine translation is the biggest application of the Natural Language Processing (NLP). Moses is statistical machine translation system allow to train translation models for any language pair. We have developed translation system using Statistical based approach which helps in translating English to Dogri and vice versa. The parallel corpus consists of 98,973 sentences. The system gives accuracy of 80% in translating English to Dogri and the system gives accuracy of 87% in translating Dogri to English system.


2014 ◽  
Vol 102 (1) ◽  
pp. 69-80 ◽  
Author(s):  
Torregrosa Daniel ◽  
Forcada Mikel L. ◽  
Pérez-Ortiz Juan Antonio

Abstract We present a web-based open-source tool for interactive translation prediction (ITP) and describe its underlying architecture. ITP systems assist human translators by making context-based computer-generated suggestions as they type. Most of the ITP systems in literature are strongly coupled with a statistical machine translation system that is conveniently adapted to provide the suggestions. Our system, however, follows a resource-agnostic approach and suggestions are obtained from any unmodified black-box bilingual resource. This paper reviews our ITP method and describes the architecture of Forecat, a web tool, partly based on the recent technology of web components, that eases the use of our ITP approach in any web application requiring this kind of translation assistance. We also evaluate the performance of our method when using an unmodified Moses-based statistical machine translation system as the bilingual resource.


Author(s):  
A.V. Kozina ◽  
Yu.S. Belov

Automatically assessing the quality of machine translation is an important yet challenging task for machine translation research. Translation quality assessment is understood as predicting translation quality without reference to the source text. Translation quality depends on the specific machine translation system and often requires post-editing. Manual editing is a long and expensive process. Since the need to quickly determine the quality of translation increases, its automation is required. In this paper, we propose a quality assessment method based on ensemble supervised machine learning methods. The bilingual corpus WMT 2019 for the EnglishRussian language pair was used as data. The text data volume is 17089 sentences, 85% of the data was used for training, and 15% for testing the model. Linguistic functions extracted from the text in the source and target languages were used as features for training the system, since it is these characteristics that can most accurately characterize the translation in terms of quality. The following tools were used for feature extraction: a free language modeling tool based on SRILM and a Stanford POS Tagger parts of speech tagger. Before training the system, the text was preprocessed. The model was trained using three regression methods: Bagging, Extra Tree, and Random Forest. The algorithms were implemented in the Python programming language using the Scikit learn library. The parameters of the random forest method have been optimized using a grid search. The performance of the model was assessed by the mean absolute error MAE and the root mean square error RMSE, as well as by the Pearsоn coefficient, which determines the correlation with human judgment. Testing was carried out using three machine translation systems: Google and Bing neural systems, Mouses statistical machine translation systems based on phrases and based on syntax. Based on the results of the work, the method of additional trees showed itself best. In addition, for all categories of indicators under consideration, the best results are achieved using the Google machine translation system. The developed method showed good results close to human judgment. The system can be used for further research in the task of assessing the quality of translation.


Sign in / Sign up

Export Citation Format

Share Document