Predictive Modelling of Ball Burnishing Process Using Regression Analysis and Neural Network

2013 ◽  
Vol 55 (3) ◽  
pp. 187-192 ◽  
Author(s):  
Esme Ugur ◽  
Mustafa Kemal Kulekci ◽  
Sueda Ozgun ◽  
Yigit Kazancoglu
Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 18
Author(s):  
Rahel Jedamski ◽  
Jérémy Epp

Non-destructive determination of workpiece properties after heat treatment is of great interest in the context of quality control in production but also for prevention of damage in subsequent grinding process. Micromagnetic methods offer good possibilities, but must first be calibrated with reference analyses on known states. This work compares the accuracy and reliability of different calibration methods for non-destructive evaluation of carburizing depth and surface hardness of carburized steel. Linear regression analysis is used in comparison with new methods based on artificial neural networks. The comparison shows a slight advantage of neural network method and potential for further optimization of both approaches. The quality of the results can be influenced, among others, by the number of teaching steps for the neural network, whereas more teaching steps does not always lead to an improvement of accuracy for conditions not included in the initial calibration.


2015 ◽  
Vol 766-767 ◽  
pp. 1076-1084
Author(s):  
S. Kathiresan ◽  
K. Hariharan ◽  
B. Mohan

In this study, to predict the surface roughness of stainless steel-304 in Magneto rheological Abrasive flow finishing (MRAFF) process, an artificial neural network (ANN) and regression models have been developed. In this models, the parameters such as hydraulic pressure, current to the electromagnet and number of cycles were taken as variables of the model.Taguchi’s technique has been used for designing the experiments in order to observe the different values of surface roughness . A neural network with feed forward with the help of back propagation was made up of 27 input neurons, 7 hidden neurons and one output neuron. The 6 sets of experiments were randomly selected from orthogonal array for training and residuals were used to analyze the performance. To check the validity of regression model and to determine the significant parameter affecting the surface roughness, Analysis of variance (ANOVA) andF-test were made. The numerical analysis depict that the current to the electromagnet was an paramount parameter on surface roughness.Key words: MRAFF, ANN, Regression analysis


2011 ◽  
Vol 26 (12) ◽  
pp. 1494-1502 ◽  
Author(s):  
J. A. Travieso-Rodríguez ◽  
G. Dessein ◽  
H. A. González-Rojas

Author(s):  
Hung-Yuan Chen ◽  
Hua-Cheng Chang

AbstractConsumers' psychological perceptions of a product are significantly influenced by its appearance aesthetics, and thus product form plays an essential role in determining the commercial success of a product. The evolution of a product's form during the design process is typically governed by the designer's individual preferences and creative instincts. As a consequence, there is a risk that the product form may fail to satisfy the consumers' expectations or may induce an unanticipated consumer response. This study commences developing an integrated design approach based on the numerical definition of product form. A series of evaluation trials are then performed to establish the correlation between the product form features and the consumers' perceptions of the product image. The results of the evaluation trials are used to construct three different types of mathematical model (a multiple regression analysis model, a backpropagation neural network model, and a multiple regression analysis with a backpropagation neural network model) to predict the likely consumer response to any arbitrary product form. The feasibility of an integrated design approach is demonstrated using a three-dimensional knife form. Although this study takes an example for illustration and verification purposes, the methodology proposed in the present study is equally applicable to any form of consumer product.


Sign in / Sign up

Export Citation Format

Share Document