Effect of cryogenic treatment on the microstructure and wear behavior of a T-42 tool steel

2015 ◽  
Vol 57 (4) ◽  
pp. 306-310 ◽  
Author(s):  
Lakhwinder Pal Singh ◽  
Jagtar Singh
2009 ◽  
Vol 30 (8) ◽  
pp. 3259-3264 ◽  
Author(s):  
A. Akhbarizadeh ◽  
A. Shafyei ◽  
M.A. Golozar

Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1038 ◽  
Author(s):  
Pello Jimbert ◽  
Maider Iturrondobeitia ◽  
Julen Ibarretxe ◽  
Roberto Fernandez-Martinez

The effects of deep cryogenic treatment (DCT) on the wear behavior of different tool steels have been widely reported in the scientific literature with uneven results. Some tool steels show a significant improvement in their wear resistance when they have been cryogenically treated while others exhibit no relevant amelioration or even a reduction in their wear resistance. In this study, the influence of DCT was investigated for a grade that has been barely studied in the scientific literature, the AISI A8 air-hardening medium-alloy cold work tool steel. Several aspects were analyzed in the present work: the wear resistance of the alloy, the internal residual stress, and finally the secondary carbide precipitation in terms of lengths and occupied area and its distribution into the microstructure. The results revealed a reduction in the wear rate of about 14% when the AISI A8 was cryogenically treated before tempering. The number of carbides that precipitated into the microstructure was 6% higher for the cryogenically treated samples, increasing from 0.68% to 0.73% of the total area they covered. Furthermore, the distribution of the carbides into the microstructure was more homogenous for the cryogenically treated samples.


2019 ◽  
Vol 120 (9) ◽  
pp. 888-897 ◽  
Author(s):  
Jalil Soleimany ◽  
Hamid Ghayour ◽  
Kamran Amini ◽  
Farhad Gharavi

2020 ◽  
Vol 10 (5) ◽  
pp. 131-136
Author(s):  
Dr. M. M. Dhobe

Cryogenic treatment is a secondary process to traditional heat treatment used for improving the hardness and wear resistance of tool steels. Though the potential use of cryogenic treatment on AISI D2 tool steel under laboratory conditions has been well established by the researchers, it is essential to do the analysis to ensure its sustainable use for industrial application. Therefore, impact of cryogenic treatment on AISI D2 steel blanking punch was evaluated in terms of increase in production rate and its life. The cryogenically treated D2 tool steel punches were used and subjected to manufacture the control levers using blanking operations.  The improved wear resistance of cryogenically treated punch resulted in increase in production and punch life more than 200%. Punch life was studied and correlated to increase in production & wear behavior of blanking punch. The AISI D2 steel samples were prepared and subjected to laboratory tests comprising of metallographic observations and hardness. It was found that laboratory tests were not enough to predict improvements in mechanical properties. The mechanism responsible for augmented wear resistance by cryogenic treatment was the conversion of retained austenite to martensite and precipitation of new secondary carbides.


2014 ◽  
Vol 592-594 ◽  
pp. 1331-1335 ◽  
Author(s):  
Haider Nasreen ◽  
S. Beer Mohamed ◽  
S. Rasool Mohideen

This paper helps in understanding the effects of cryogenic treatment on microstructural variation, hardness and wear behavior of Ti-6Al-4V alloy. The microstructure indicates white β-phase dispersed on the grain boundaries of dark α-phase. Cryogenic treatment at-186 °C for 10 h led to the transformation from β-phase to α-phase, resulting in coarsening of α. Hardness of the cryogenically treated sample was observed to decrease and wear loss was observed to increase; this can be attributed to the coarsening of α-phase.


Sign in / Sign up

Export Citation Format

Share Document