Quenching and Partitioning Steel Heat Treatment

2013 ◽  
Vol 2 (4) ◽  
pp. 268-281 ◽  
Author(s):  
Li Wang ◽  
John G. Speer

2006 ◽  
Vol 438-440 ◽  
pp. 25-34 ◽  
Author(s):  
D.V. Edmonds ◽  
K. He ◽  
F.C. Rizzo ◽  
B.C. De Cooman ◽  
D.K. Matlock ◽  
...  

2007 ◽  
pp. 4819-4825 ◽  
Author(s):  
D.V. Edmonds ◽  
K. He ◽  
M.K. Miller ◽  
F.C. Rizzo ◽  
A. Clarke ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1556
Author(s):  
Zhao Li ◽  
Run Wu ◽  
Mingwei Li ◽  
Song-Sheng Zeng ◽  
Yu Wang ◽  
...  

High boron steel is prone to brittle failure due to the boride distributed in it with net-like or fishbone morphology, which limit its applications. The Quenching and Partitioning (Q&P) heat treatment is a promising process to produce martensitic steel with excellent mechanical properties, especially high toughness by increasing the volume fraction of retained austensite (RA) in the martensitic matrix. In this work, the Q&P heat treatment is used to improve the inherent defect of insufficient toughness of high boron steel, and the effect mechanism of this process on microstructure transformation and the change of mechanical properties of the steel has also been investigated. The high boron steel as-casted is composed of martensite, retained austensite (RA) and eutectic borides. A proper quenching and partitioning heat treatment leads to a significant change of the microstructure and mechanical properties of the steel. The net-like and fishbone-like boride is partially broken and spheroidized. The volume fraction of RA increases from 10% in the as-cast condition to 19%, and its morphology also changes from blocky to film-like. Although the macro-hardness has slightly reduced, the toughness is significantly increased up to 7.5 J·cm−2, and the wear resistance is also improved.


2020 ◽  
Vol 96 (4) ◽  
pp. 30-38
Author(s):  
O. M. Sydorchuk ◽  
◽  
L. A. Myroniuk ◽  
D. V. Myroniuk ◽  
K. O. Gogaev ◽  
...  

The results of researches on steel 4H4N5M4F2 modes thermo-deformation processing optimization are given. It is established that incomplete annealing (750 °С ± 20 °С in comparison with full annealing 860 °С) in cast and forged condition promotes to improve the machining of blanks for the manufacture of matrices. It is shown that the use of incomplete annealing, namely partial recrystallization promotes the formation of spheroidized rather than lamellar carbide phase, which leads to a decrease in the characteristics: strength threshold, yield strength, hardness 900 MPa, 800 MPa, 32 33 HRC in the cast state and 1200 MPa, 1050 MPa, 38 39 HRC in forged condition, respectively. This increases the fracture toughness: 180 J/cm2 in the cast state and 130 J/cm2 in the forged state. The optimized mode of forging at the temperature of 1170 ± 20 °С and heat treatment (hardening at 1100 ± 5 °С and tempering at 595 ± 5 °С) of steel 4H4N5M4F2 allowed to increase impact strength five times in comparison with cast experimental steel, and also to increase strength threshold of 100 MPa. Forged steel 4H4N5M4F2 has slightly lower heat resistance compared to cast, which hardens at temperatures above 630 °C during operation of the die steel tool. After operation of the extruder wheels made of investigated forged steel and forged steel 4H5MF1S, which was used at the enterprise in copper processing, the properties of both steels were determined. The investigated forged steel 4H4N5M4F2 is characterized by an increase in the strength threshold by 200 MPa and hardness by 6 HRC. After operation (production of 60 tons of copper products of M1 grade) the tool (wheel extruder) from H13 steel (analog 4H5MF1S) had micro and macrocracks on the side and inner parts, and in the investigated steel 4H4N5M4F2 such defects were absent. Thus, the studied steel is characterized by increased stability. Keywords: steel, heat treatment, forging, structure, physical and mechanical properties.


Author(s):  
Angelo Fernando Padilha ◽  
Ronald Lesley Plaut ◽  
Paulo Rangel Rios

Sign in / Sign up

Export Citation Format

Share Document