Using a Road Surface Analyzer to Explain Noise Characteristics of Portland Cement Concrete Pavement Surface Texture

2000 ◽  
Vol 1716 (1) ◽  
pp. 144-153 ◽  
Author(s):  
David A. Kuemmel ◽  
Ronald C. Sonntag ◽  
John R. Jaeckel ◽  
James A. Crovetti ◽  
Yosef Z. Becker ◽  
...  

Uniformly spaced, transverse-tined portland cement concrete (PCC) pavements have been in extensive use in the United States since the early 1970s. Recent research by the Wisconsin Department of Transportation (WisDOT) and FHWA has led to an interim guideline for randomization of the tining pattern, with spacings varying from 10 to 40 mm and 50 percent of the spacings at or below 25 mm. At least five states have experimented with this random pattern. A six-state research study, funded by WisDOT and FHWA, was completed in 2000 by Marquette University and the HNTB Corporation. This study investigated 57 different PCC pavement textures, including a wide range of transverse and longitudinal tining patterns. One goal was to explain noise differences within and between various textures as well as to document noise and texture differences. The laser-based road surface analyzer (ROSAN), developed cooperatively by the Turner Fairbanks Research Center and private industry, was utilized for surface textural measurements. Before the advent of laser-based texture measurement devices, large studies of this type would have relied on manual volumetric (sand patch) measurements to quantify surface textural differences, making virtually impossible the determination of reasons for differences in noise characteristics of various textures. The use of ROSAN is described, tools developed to analyze textural variations and noise characteristics of tined pavement surfaces are presented, and correlations between ROSAN outputs and other variables, including noise level and sand patch measurements, are provided. Examples of simple and more subtle causes of noise discrepancies on random transverse tined PCC pavements are presented by use of ROSAN outputs. A great variation in surface texture, including tine spacing, width, and depth, was found among different PCC pavement sections constructed to identical tining specifications. Significant variations were also noted within any given test section in all states. A low correlation between ROSAN estimated texture depth and noise was observed. A more significant correlation between depth and width of tining was observed with use of ROSAN outputs. Recommendations include the need for quality control of tine depth, the need for a wet pavement accident study to determine tining depth requirements, and the development of an improved measurement device for measuring longitudinally tined PCC pavements.

Author(s):  
Mary Vancura ◽  
Derek Tompkins ◽  
Lev Khazanovich

The SHRP 2 R21 project on composite pavement investigated the durability of various mixtures of portland cement concrete (PCC) used in the construction of a two-layer composite PCC pavement. Project consultants in Europe, where composite PCC over PCC pavement was more common than in the United States, advised the R21 research team to consider using the CIF (capillary suction, internal damage, and freeze–thaw) standard of the International Union of Laboratories and Experts in Construction Materials, Systems, and Structures (RILEM), Paris, rather than the familiar ASTM standards. As a result, the R21 project adopted the RILEM CIF standard to evaluate the freeze–thaw durability and salt scaling resistance of concretes. The research also explored a modified RILEM CIF test (using pure water instead of a sodium chloride solution in scaling tests) alongside the standard RILEM CIF tests. The paper describes this experience to expose other institutions and agencies in the United States to the RILEM standards for the freeze–thaw durability and salt scaling resistance testing of concretes.


Author(s):  
Ziad S. Saad ◽  
John R. Jaeckel ◽  
Yosef Z. Becker ◽  
David A. Kuemmel ◽  
Alex Satanovsky ◽  
...  

Uniformly spaced, transverse-tined portland cement concrete (PCC) pavements have been in extensive use in the United States since the early 1970s. However, driving on tined pavements generates an uncomfortable acoustic “whine”that has a discrete frequency. Recent research by the Wisconsin Department of Transportation (WisDOT) and FHWA led to an interim guideline for randomization of the tining pattern. The guideline called for tine spacing varying from 10 to 40 mm, with 50 percent of the spacing below 25 mm. At least five states have experimented with this random pattern, with limited success in eliminating the whine. A study was completed recently as part of a WisDOT contract with Marquette University and the HNTB Corporation, and funded by FHWA, to analyze all of the pavements. The tonal properties of acoustical noise were related to the serial arrangement of the tining, showing that the frequencies can be predicted from the power spectrum of the series of tines. A method of designing the series of tines that minimizes and possibly eliminates the presence of these whines is proposed and explained. By predicting the tonal properties of acoustical noise at the rake-design stage, the construction effort in building and researching noise and texture characteristics is substantially reduced. A random rake, designed using the proposed methodology, has been used in tining a road section, and preliminary spectral analysis of the acoustic noise revealed no tining-related discrete tones.


Author(s):  
Ahmad Ardani

The testing and construction details of nine test sections with varying textural characteristics are described. The effects of the textures on the frictional and noise characteristics of the pavement surface were examined. Skid numbers were acquired according to ASTM E274 with ribbed and smooth tires at 65, 80, and 105 km/hr for all sections. Six types of texture-measuring devices were used to measure and compare the amount of texture in each section. To examine the noise properties of the test sections, noise data were required in three locations: inside the vehicle, 25 ft from the centerline, and near the right rear tire of the vehicle. The smooth tire showed more sensitivity to micro- and macrotexture than the ribbed tire, and longitudinal textures were quieter than transverse textures.


1997 ◽  
Vol 503 ◽  
Author(s):  
B. K. Diefenderfer ◽  
I. L. Al-Qadi ◽  
J. J. Yoho ◽  
S. M. Riad ◽  
A. Loulizi

ABSTRACTPortland cement concrete (PCC) structures deteriorate with age and need to be maintained or replaced. Early detection of deterioration in PCC (e.g., alkali-silica reaction, freeze/thaw damage, or chloride presence) can lead to significant reductions in maintenance costs. However, it is often too late to perform low-cost preventative maintenance by the time deterioration becomes evident. By developing techniques that would enable civil engineers to evaluate PCC structures and detect deterioration at early stages (without causing further damage), optimization of life-cycle costs of the constructed facility and minimization of disturbance to the facility users can be achieved.Nondestructive evaluation (NDE) methods are potentially one of the most useful techniques ever developed for assessing constructed facilities. They are noninvasive and can be performed rapidly. Portland cement concrete can be nondestructively evaluated by electrically characterizing its complex dielectric constant. The real part of the dielectric constant depicts the velocity of electromagnetic waves in PCC. The imaginary part, termed the “loss factor,” describes the conductivity of PCC and the attenuation of electromagnetic waves.Dielectric properties of PCC have been investigated in a laboratory setting using a parallel plate capacitor operating in the frequency range of 0.1 to 40.1MIHz. This capacitor set-up consists of two horizontal-parallel plates with an adjustable separation for insertion of a dielectric specimen (PCC). While useful in research, this approach is not practical for field implementation. A new capacitor probe has been developed which consists of two plates, located within the same horizontal plane, for placement upon the specimen to be tested. Preliminary results show that this technique is feasible and results are promising; further testing and evaluation is currently underway.


Sign in / Sign up

Export Citation Format

Share Document