Design of Bus Routes: Methodology and the Santo Domingo Case

Author(s):  
Avishai Ceder ◽  
Oneximo Gonzalez ◽  
Hugo Gonzalez

Growing traffic congestion, the importance of preserving the environment, and the problems of road safety are the main reasons to consider new initiatives worldwide in designing new urban transit routes. A need exists to develop a practical methodology for the construction of a new or improved network of bus routes along with intermodality considerations. An approach for the design of urban bus routes is presented with an example of designing new bus routes for the city of Santo Domingo in the Dominican Republic. Santo Domingo has major congestion, environmental, and safety problems. The presented approach involves a framework for the construction of operational objective functions for the bus-network-design problem. This framework takes into account passenger, operator, and community interests. The methodology combines the philosophy of mathematical programming approaches with decisionmaking techniques, so as to allow the user to select from a number of alternatives. The overall formulation is nonlinear and mixed-integer programming. The bus-network-design formulation used in the case study of Santo Domingo, a city with 3 million inhabitants, involved a large network of feasible bus routes subjected to the proposed method and resulted in 84 new bus routes. With other accompanied measures, the new bus routes will change the bus system image in Santo Domingo.

2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Yuan Jiang ◽  
Baofeng Sun ◽  
Gendao Li ◽  
Zhibin Lin ◽  
Changxu Zheng ◽  
...  

Highway passenger transport based express parcel service (HPTB-EPS) is an emerging business that uses unutilised room of coach trunk to ship parcels between major cities. While it is reaping more and more express market, the managers are facing difficult decisions to design the service network. This paper investigates the HPTB-EPS network design problem and analyses the time-space characteristics of such network. A mixed-integer programming model is formulated integrating the service decision, frequency, and network flow distribution. To solve the model, a decomposition-based heuristic algorithm is designed by decomposing the problem as three steps: construction of service network, service path selection, and distribution of network flow. Numerical experiment using real data from our partner company demonstrates the effectiveness of our model and algorithm. We found that our solution could reduce the total cost by up to 16.3% compared to the carrier’s solution. The sensitivity analysis demonstrates the robustness and flexibility of the solutions of the model.


1989 ◽  
Vol 40 (8) ◽  
pp. 751-767 ◽  
Author(s):  
Geok Koon Kuah ◽  
Jossef Perl

2019 ◽  
Vol 3 (2) ◽  
pp. 110-130 ◽  
Author(s):  
Dave C. Longhorn ◽  
Joshua R. Muckensturm

Purpose This paper aims to introduce a new mixed integer programming formulation and associated heuristic algorithm to solve the Military Nodal Capacity Problem, which is a type of supply chain network design problem that involves determining the amount of capacity expansion required at theater nodes to ensure the on-time delivery of military cargo. Design/methodology/approach Supply chain network design, mixed integer programs, heuristics and regression are used in this paper. Findings This work helps analysts at the United States Transportation Command identify what levels of throughput capacities, such as daily processing rates of trucks and railcars, are needed at theater distribution nodes to meet warfighter cargo delivery requirements. Research limitations/implications This research assumes all problem data are deterministic, and so it does not capture the variations in cargo requirements, transit times or asset payloads. Practical implications This work gives military analysts and decision makers prescriptive details about nodal capacities needed to meet demands. Prior to this work, insights for this type of problem were generated using multiple time-consuming simulations often involving trial-and-error to explore the trade space. Originality/value This work merges research of supply chain network design with military theater distribution problems to prescribe the optimal, or near-optimal, throughput capacities at theater nodes. The capacity levels must meet delivery requirements while adhering to constraints on the proportion of cargo transported by mode and the expected payloads for assets.


Author(s):  
Jun Zhao ◽  
Lixiang Huang

The management of hazardous wastes in regions is required to design a multi-echelon network with multiple facilities including recycling, treatment and disposal centers servicing the transportation, recycling, treatment and disposal procedures of hazardous wastes and waste residues. The multi-period network design problem within is to determine the location of waste facilities and allocation/transportation of wastes/residues in each period during the planning horizon, such that the total cost and total risk in the location and transportation procedures are minimized. With consideration of the life cycle capacity of disposal centers, we formulate the problem as a bi-objective mixed integer linear programming model in which a unified modeling strategy is designed to describe the closing of existing waste facilities and the opening of new waste facilities. By exploiting the characteristics of the proposed model, an augmented ε -constraint algorithm is developed to solve the model and find highly qualified representative non-dominated solutions. Finally, computational results of a realistic case demonstrate that our algorithm can identify obviously distinct and uniformly distributed representative non-dominated solutions within reasonable time, revealing the trade-off between the total cost and total risk objectives efficiently. Meanwhile, the multi-period network design optimization is superior to the single-period optimization in terms of the objective quality.


2019 ◽  
Vol 28 (4) ◽  
pp. 1441-1458 ◽  
Author(s):  
Dušan Hrabec ◽  
Jakub Kůdela ◽  
Radovan Šomplák ◽  
Vlastimír Nevrlý ◽  
Pavel Popela

Author(s):  
Wei (David) Fan ◽  
Randy B. Machemehl

The objective of this paper is to present some computational insights based on previous extensive research experiences on the optimal bus transit route network design problem (BTRNDP) with zonal demand aggregation and variable transit demand. A multi-objective, nonlinear mixed integer model is developed. A general meta-heuristics-based solution methodology is proposed. Genetic algorithms (GA), simulated annealing (SA), and a combination of the GA and SA are implemented and compared to solve the BTRNDP. Computational results show that zonal demand aggregation is necessary and combining metaheuristic algorithms to solve the large scale BTRNDP is very promising.


Sign in / Sign up

Export Citation Format

Share Document