Identification of Parameters for a Prospect Theory Model for Travel Choice Analysis

2008 ◽  
Vol 2082 (1) ◽  
pp. 141-147 ◽  
Author(s):  
Erel Avineri ◽  
Piet H. L. Bovy
2021 ◽  
Author(s):  
Agnieszka Tymula ◽  
Yuri Imaizumi ◽  
Takashi Kawai ◽  
Jun Kunimatsu ◽  
Masayuki Matsumoto ◽  
...  

Research in behavioral economics and reinforcement learning has given rise to two influential theories describing human economic choice under uncertainty. The first, prospect theory, assumes that decision-makers use static mathematical functions, utility and probability weighting, to calculate the values of alternatives. The second, reinforcement learning theory, posits that dynamic mathematical functions update the values of alternatives based on experience through reward prediction error (RPE). To date, these theories have been examined in isolation without reference to one another. Therefore, it remains unclear whether RPE affects a decision-maker's utility and/or probability weighting functions, or whether these functions are indeed static as in prospect theory. Here, we propose a dynamic prospect theory model that combines prospect theory and RPE, and test this combined model using choice data on gambling behavior of captive macaques. We found that under standard prospect theory, monkeys, like humans, had a concave utility function. Unlike humans, monkeys exhibited a concave, rather than inverse-S shaped, probability weighting function. Our dynamic prospect theory model revealed that probability distortions, not the utility of rewards, solely and systematically varied with RPE: after a positive RPE, the estimated probability weighting functions became more concave, suggesting more optimistic belief about receiving rewards and over-weighted subjective probabilities at all probability levels. Thus, the probability perceptions in laboratory monkeys are not static even after extensive training, and are governed by a dynamic function well captured by the algorithmic feature of reinforcement learning. This novel evidence supports combining these two major theories to capture choice behavior under uncertainty.


2011 ◽  
Vol 243-249 ◽  
pp. 4418-4421
Author(s):  
Zhi Yong Yang ◽  
Gui Yun Yan

This paper takes commuters’ daily travel as research object to build model of travel choice which contains departure time and travel route based on Prospect Theory. Choosing the time of arriving destination as reference point, commuter will choose the time at which he/she can obtain the maximum value as departure time, then establishes choice model of departure time. Using Bayesian Theory to update and adjust route’s forecasting travel time in light of traffic information provided by Advanced Traveler Information Systems (ATIS) and travelers’ previous experience information. Gets decision weighting function after having analyzed traveler’s individual subjective probability which is about the possible result for route choice, then obtains the expression of travel route’s prospect value and gets route choice model. Finally, by designing a network to analyze the dynamic choice model, and achieves expected effect.


2019 ◽  
Author(s):  
Oliver Herrmann ◽  
Richard Jong-A-Pin ◽  
Lambert Schoonbeek

2019 ◽  
Vol 168 ◽  
pp. 362-373 ◽  
Author(s):  
Oliver Herrmann ◽  
Richard Jong-A-Pin ◽  
Lambert Schoonbeek

2018 ◽  
Vol 10 (11) ◽  
pp. 3852 ◽  
Author(s):  
Xingchuan Wang ◽  
Enjian Yao ◽  
Shasha Liu

With the continuous expansion of the network scale and increasing of passengers, metro emergencies such as operational equipment failure are happening more frequently. Due to the narrow space and crowds of people, metro emergencies always have more of an impact than road traffic emergencies. In order to adopt appropriate measures to ensure passenger safety and avoid risks, we need to get a better understanding of passengers’ travel choice behaviors under emergencies. Most of the existing research studies related to travel choice behaviors took the random utility maximization (RUM) principle for granted, but failed to realize the potential of different decision-making processes and changes to the decision-making environment. In this research, we aim to analyze metro passengers’ travel choice behaviors under metro network emergency contexts. Based on the data collected from a survey about travel choices under metro emergencies in the Guangzhou Metro, we compared the performances of models that follow the RUM and random regret minimization (RRM) principles, and established a hybrid RUM-RRM model as well as a nested logit model following RRM (NL-RRM) to estimate the effects of various factors on passengers’ travel choice behaviors. Comparisons illustrate that the hybrid model and NL-RRM model can improve model fit, and the combination of RUM and RRM outperforms either of them respectively.


Sign in / Sign up

Export Citation Format

Share Document