Incorporating the Effect of Moisture Variation on Resilient Modulus for Unsaturated Fine-Grained Subgrade Soils

Author(s):  
Murad Y. Abu-Farsakh ◽  
Ayan Mehrotra ◽  
Louay Mohammad ◽  
Kevin Gaspard
2015 ◽  
Vol 52 (10) ◽  
pp. 1605-1619 ◽  
Author(s):  
Zhong Han ◽  
Sai K. Vanapalli

Soil suction (ψ) is one of the key factors that influence the resilient modulus (MR) of pavement subgrade soils. There are several models available in the literature for predicting the MR–ψ correlations. However, the various model parameters required in the existing models are generally determined by performing regression analysis on extensive experimental data of the MR–ψ relationships, which are cumbersome, expensive, and time-consuming to obtain. In this paper, a model is proposed to predict the variation of the MR with respect to the ψ for compacted fine-grained subgrade soils. The information of (i) the MR values at optimum moisture content condition (MROPT) and saturation condition (MRSAT), which are typically determined for use in pavement design practice; (ii) the ψ values at optimum moisture content condition (ψOPT); and (iii) the soil-water characteristic curve (SWCC) is required for using this model. The proposed model is validated by providing comparisons between the measured and predicted MR–ψ relationships for 11 different compacted fine-grained subgrade soils that were tested following various protocols (a total of 16 sets of data, including 210 testing results). The proposed model was found to be suitable for predicting the variation of the MR with respect to the ψ for all the subgrade soils using a single-valued model parameter ξ, which was found to be equal to 2.0. The proposed model is promising for use in practice, as it only requires conventional soil properties and alleviates the need for experimental determination of the MR–ψ relationships.


2014 ◽  
Vol 488-489 ◽  
pp. 411-416 ◽  
Author(s):  
Zhi Yong Li ◽  
Jing Rong Zou ◽  
Cheng Dong

The matric suctions were measured by the filter paper method, and the parameters of soil-water characteristic curve were obtained. In order to investigate the effect of moisture content on cohesive subgrade soils dynamic resilient modulus, a series of dynamic-triaxial test were carried out. Based on the matric suctions measured by the filter paper method, the relationship between dynamic resilient modulus and matric suctions were analyzed. The study demonstrated that the dynamic resilient modulus values decrease with the increase of circular deviator stress and moisture content, in reverse of matric suctions. Considering that the dynamic resilient modulus is a function of deviator stress and bulk stress, based on the present three parameters compound constitutive model which reflects the effect of bulk stress and deviator stress, the effect of matric suctions which could indirectly reflect the effect of moisture content was introduced. And then the prediction model incorporating the effect of stress and moisture for cohesive subgrade soils was established. The model was utilized for experimental data regression analysis, a high coefficient of determination shows that the model is accurate and credible. The prediction models not only can evaluate the long-term performance of subgrade soil in Southern China's rainy areas, but also can provide parameters for the pavement design based on dynamic method.


Author(s):  
Auckpath Sawangsuriya ◽  
Tuncer B. Edil ◽  
Craig H. Benson

Sign in / Sign up

Export Citation Format

Share Document