moisture variation
Recently Published Documents


TOTAL DOCUMENTS

195
(FIVE YEARS 56)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
Vol 14 (2) ◽  
pp. 256
Author(s):  
Yue Wang ◽  
Jianjun Cao ◽  
Yongjuan Liu ◽  
Ying Zhu ◽  
Xuan Fang ◽  
...  

The South-to-North Water Transfer Jiangsu Water Supply Area (JWSA) is a mega inter-basin water transfer area (water source) that provides water resources from JiangHuai, combines drainage and flooding management, and regulates nearby rivers and lakes. Analyzing the spatiotemporal soil moisture dynamics in the area will be informative regarding agricultural drought along with flood disaster assessment and will provide early warning studies. Therefore, we evaluated the quality of European Space Agency Climate Change Initiative Soil Moisture (ESA CCI_SM) data in the South-North Water Transfer JWSA. Furthermore, we utilized ensemble empirical modal decomposition, Mann-Kendall tests, and regression analysis to study the spatiotemporal variation in soil moisture for the past 29 years. The CCI _SM data displayed a high correlation with local soil measurements at nine sites. We next analyzed the CCI_SM data from three pumping stations (the Gaogang, Hongze, and Liushan stations) in the South-North Water Transfer JWSA. These stations had similar periodic characteristics of soil moisture, with significant periodic fluctuations around 3.1 d. The overall soil moisture at the three typical pumping stations demonstrated an increasing trend. We further investigated whether abrupt soil moisture changes existed at each station or not. The spatial distribution of soil moisture in the South-North Water Transfer JWSA was characterized as “dry north and wet south”, with higher soil moisture in winter, followed by autumn, and low soil moisture in spring and summer. Although the linear trend of soil moisture in the South-North Water Transfer JWSA varied in significance, the overall soil moisture in the JWSA has increased over the past 29 years. The areas with significantly enhanced soil moisture are mostly distributed in the Yangzhou and Huai’an areas in the southeastern part of the study area. The areas with significantly decreased soil moisture are small in size and mostly located in northern Xuzhou.


2021 ◽  
Vol 14 (1) ◽  
pp. 34
Author(s):  
Qingqing Cao ◽  
Imad L. Al-Qadi

Moisture presence in asphalt concrete (AC) pavement is a major cause of damage to the pavement. In recent decades, an increasing need exists for non-destructive detection and monitoring of the moisture content in AC pavement. This paper provides a simulated approach to quantify the effect of internal moisture content on AC pavement dielectric properties using ground-penetrating radar (GPR). A heterogeneous numerical model was developed to simulate AC pavement with internal moisture at various saturation levels. The numerical model was validated using GPR surveys on cold-in-place recycling treated pavements. An empirical formula was derived from the simulation to correlate the dielectric constant with the moisture content for non-dry AC pavement. The results validated the proposed model and, hence, demonstrated the ability of GPR to monitor moisture variation in AC pavements.


Author(s):  
Yue Wang ◽  
Jianjun Cao ◽  
Yongjuan Liu ◽  
Ying Zhu ◽  
xuan Fang ◽  
...  

The South-to-North Water Transfer Jiangsu Water Supply Area (JWSA) is a mega inter-basin water transfer area (water source) that provides water resources from JiangHuai, combines drainage and flooding management, and regulates nearby rivers and lakes. Analyzing the spatiotemporal soil moisture dynamics in the area will inform agricultural drought and flood disaster assessment and early warning studies. Therefore, we evaluated the quality of European Space Agency Climate Change Initiative Soil moisture (ESA CCI_SM) data in the South-North Water Transfer JWSA. Then, we used ensemble empirical modal decomposition, Mann-Kendall tests, and regression analysis to study the spatiotemporal variation in soil moisture for the past 29 years. The CCI _SM data showed a high correlation with local soil measurements at nine sites. We then analyzed the CCI_SM data from three pumping stations (the Gaogang, Hongze, and Liushan stations) in the South-North Water Transfer JWSA. These stations had similar periodic characteristics of soil moisture, with significant periodic fluctuations around 3.1 d. The overall soil moisture at the three typical pumping stations showed an increasing trend. We then investigated whether there were abrupt soil moisture changes at each station. The spatial distribution of soil moisture in the South-North Water Transfer JWSA was characterized by “dry north and wet south”, with higher soil moisture in winter, followed by autumn, and low soil moisture in spring and summer. Although the linear trend of soil moisture in the South-North Water Transfer JWSA varied in significance, the overall soil moisture in the JWSA has increased over the past 29 years. The areas with significantly enhanced soil moisture are mainly distributed in the Yangzhou and Huai'an areas in the southeastern part of the study area. The areas with significantly decreased soil moisture are small in size and mainly located in northern Xuzhou.


Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sohrab Rahimi ◽  
Stavros Avramidis ◽  
Ciprian Lazarescu

Abstract Kiln drying is admittedly a significant value-adding step in timber processing where the importance of predicting moisture within a dried batch cannot be overemphasized. This study predicts and characterizes the moisture variation in kiln-dried wood based on the initial and target moisture values using polynomial models. Four polynomial models are used to correlate initial and final moisture characteristics. First model is linear while the three others are nonlinear. The robustness of the three best models is analyzed and a closed formula is proposed to evaluate the final moisture coefficient of variation based on the target moisture and initial moisture coefficient of variation. Three models could successfully characterize the final moisture variation with the best one showing an R 2 > 96%. However, the first (linear) model is the most resilient and, thus recommended for estimating final moisture variation.


2021 ◽  
Vol 171 ◽  
pp. 106839
Author(s):  
Daniele C.G.C. Kunze ◽  
Tereza C.M. Pastore ◽  
Hugo S. Rocha ◽  
Priscila Veras Dos Anjos Lopes ◽  
Rafaela Dornelas Vieira ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Xueyun Ma ◽  
Zhifu Wei ◽  
Yongli Wang ◽  
Gen Wang ◽  
Ting Zhang ◽  
...  

Hydroclimate evolution history and changes in the Tibetan Plateau play significant roles in depicting paleoclimate and evaluating climatic conditions in the coming future. However, the interaction of the westerlies and the Asian monsoon complicates our understanding of the mechanism of climate variation over the Tibetan Plateau. In this study, we assessed the paleoclimate of Hurleg Lake, which was previously located in the convergence area of the East Asian monsoon and westerly wind. We first reconstructed the climatic conditions based on fined-grained authigenic carbonate δ18O (δ18Ocarb), plant-derived proxies of C/N, and n-alkane-derived δ13C31. In the Hurleg Lake, δ18Ocarb was controlled by δ18O changes of the lake water and evaporation. The climate evolution since ∼16.1 cal kyr BP can be classified into three stages. The Lateglacial (16.1–11.0 cal kyr BP) was characterized by a warm-wet climate in the beginning, followed by a cold-dry climate since 12.0 cal kyr BP. Typical warm and cold phases occurred during 14.8–12.0 cal kyr BP and 12.0–11.1 cal kyr BP, which may correspond to the Bølling/Allerød (B/A) and Younger Dryas periods, respectively. The early to mid-Holocene was generally characterized by a warm-wet climate; however, notable cold-dry intervals occurred at ∼8.3 cal kyr BP. The Late Holocene (after 4.8 cal kyr BP) displayed a significantly cold-wet climate. Finally, we examined the possible mechanisms responsible for the climate variability in the study area. The results showed that the long-term warm trend in the Lateglacial and colder trend after early Holocene was controlled by insolation. The Asian summer monsoon and the westerlies played a significant role in determining moisture sources during the Lateglacial. The East Asian monsoon contributed greatly to the moisture variation from the early to mid-Holocene, whereas the westerly winds dominated during the late Holocene. Combined, our findings highlight the complex changes in hydroclimate conditions since the last glacial in the Tibetan Plateau and provide crucial implications for comprehending the hydroclimate pattern in the transition zone of westerlies and Asian monsoon.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012036
Author(s):  
Kan Zu ◽  
Menghao Qin

Abstract Indoor air humidity evaluation plays an of great importance role on the thermal comfort and building energy consumption. The utilization of hygroscopic materials as building materials acts on the indoor air humidity by regulating its humidity fluctuations, and then reduces a certain fraction of energy consumption on the air conditioning systems. Based on the Fick’s law, the physical process inside these hygroscopic materials requires the determinations of hygrothermal properties, which signify the extensive and reiterative experiments. While in many building simulation toolboxes, moisture buffering behavior has been evaluated by either simple approximations or complicated heat and mass model. In this case, we developed a mathematical model about the moisture transport with acceptable solution time and accuracy in terms of the moisture buffer value (MBV) theory. Considering that MBV originally represents the moisture buffering capacity of those hygroscopic materials, we did some mathematical deduction about MBVs under different boundary conditions. Then the definition of time-average MBV has been used, and all the required parameters was obtained from the practical MBV test. By comparing the new moisture buffer value model (MBM) with HAMT model, the results indicated that MBM could provide reasonably accurate prediction for indoor moisture variation.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2499
Author(s):  
Xiao Sun ◽  
Jinjie You ◽  
Yan Dong ◽  
Ligen Xu ◽  
Clay J. Maynard ◽  
...  

The scope of this paper was to investigate the effects of water distribution differences on the quality and feasibility of chicken patties supplemented with woody breast (WB). Chicken patties, containing differing amounts of WB (0%, 25%, 50%, 75%, 100%) were analyzed using low-field NMR. Quality differences between chicken patties were further evaluated by combining lipid and protein properties, fry loss (FL), color (L*, a*, b*), texture (hardness, springiness, chewiness, cohesiveness, resilience), microstructure, and sensory characteristics. The results expressed that both lipid and protein oxidation increased and immobilized water in chicken patties can be converted to free water more easily with increasing levels of WB. Additionally, the free water ratio decreased, water freedom increased, and the bound water ratio increased (p < 0.05). Fry loss, color, texture (hardness, springiness, chewiness), microstructure, and sensory (character, organization, taste) characteristics deteriorated significantly when the WB inclusion level exceeded 25%. Particularly, characteristics of texture (chewiness and character) and sensory (character and organization) decreased significantly as WB inclusion increased past 25% (p < 0.01). Furthermore, fry loss, texture, and overall microstructure partially confirmed the moisture variation of chicken patties as the potential cause of the abnormal quality. Although the experimental data expressed that mixing to 35% WB inclusion was feasible, the practical and economic impact recommends inclusion levels to not exceed 30%.


2021 ◽  
Vol 1195 (1) ◽  
pp. 012058
Author(s):  
J Rose ◽  
J C Lai ◽  
Y L Then ◽  
C K Vithanawasam

Abstract This paper investigates the outcome of having an external heat source on temperature and moisture variations in the food waste composting process. Food waste accumulation is a growing concern in many countries. Converting food waste into usable compost is a more desirable tactic than dumping to crowded landfill sites. Closed composting was applied in this work, which relies on a controlled but uninterrupted airflow during the organic material degradation process. However, undesirable odour released at low aeration rate due to low temperature and high moisture content found in the compost. Finding the ideal aeration rate with the least possible loss of moisture is needed, which was discussed in this paper. The vegetable-fruit waste used in the experiment was given an aeration rate of 0.3 L/min at a moisture setting of 60% and 70%. For 15 mins/day, the forced aeration was carried out at 3-day intervals. Results showed that 0.3 L/min with 60% and 70% moisture content attained best temperature peaks of 32.4°C and 31.6°C, respectively at day 13 for 28 days composting. A strong odour continued to exist with the compost and was mitigated by using an external additional heat source (light bulb). The light bulb also helped to provide a higher temperature for the compost of 41.5°C by day 1 for 10 days composting.


Sign in / Sign up

Export Citation Format

Share Document