soil suction
Recently Published Documents


TOTAL DOCUMENTS

227
(FIVE YEARS 40)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Vol 139 ◽  
pp. 104329
Author(s):  
Srikanth Venkatesan ◽  
Jerome Droniou ◽  
Indrajit Roy ◽  
Dilan Robert ◽  
Annan Zhou

2021 ◽  
pp. 100675
Author(s):  
Rick Vandoorne ◽  
Petrus Johannes Gräbe ◽  
Gerhard Heymann

2021 ◽  
Author(s):  
Wei Yan ◽  
Emanuel Birle ◽  
Roberto Cudmani

AbstractA soil water characteristic curve (SWCC) model named as discrete-continuous multimodal van Genuchten model with a convenient parameter calibration method is developed to describe the relationship between soil suction and the water content of a soil with complex pore structure. The modality number N of the SWCC in the proposed model can be any positive integer (the so-called multimodal or N-modal SWCC). A unique set of parameters is determined by combining curve fitting and a graphical method based on the shape features of the SWCC in the log s–log Se plane. In addition, a modality number reduction method is proposed to minimize the number of parameters and simplify the form of SWCC function. The proposed model is validated using a set of bimodal and trimodal SWCC measurements from different soils, which yield a strong consistency between the fitted curves and the measured SWCC data. The uniqueness in the set of parameters provides the possibility to further improve the proposed model by correlating the parameters to soil properties and state parameters.


2021 ◽  
Author(s):  
Zhi-Liang Cheng ◽  
Shuaidong Yang ◽  
Lin-Shuang Zhao ◽  
Chen Tian ◽  
Wan-Huan Zhou

2021 ◽  
Vol 11 (7) ◽  
pp. 2994
Author(s):  
Guanxi Yan ◽  
Thierry Bore ◽  
Zi Li ◽  
Stefan Schlaeger ◽  
Alexander Scheuermann ◽  
...  

The strength of unsaturated soil is defined by the soil water retention behavior and soil suction acting inside the soil matrix. In order to obtain the suction and moisture profile in the vadose zone, specific measuring techniques are needed. Time domain reflectometry (TDR) conventionally measures moisture at individual points only. Therefore, spatial time domain reflectometry (spatial TDR) was developed for characterizing the moisture content profile along the unsaturated soil strata. This paper introduces an experimental set-up used for measuring dynamic moisture profiles with high spatial and temporal resolution. The moisture measurement method is based on inverse modeling the telegraph equation with a capacitance model of soil/sensor environment using an optimization technique. With the addition of point-wise soil suction measurement using tensiometers, the soil water retention curve (SWRC) can be derived in the transient flow condition instead of the static or steady-state condition usually applied for conventional testing methodologies. The experiment was successfully set up and conducted with thorough validations to demonstrate the functionalities in terms of detecting dynamic moisture profiles, dynamic soil suction, and outflow seepage flux under transient flow condition. Furthermore, some TDR measurements are presented with a discussion referring to the inverse analysis of TDR traces for extracting the dielectric properties of soil. The detected static SWRC is finally compared to the static SWRC measured by the conventional method. The preliminary outcomes underpin the success of applying the spatial TDR technique and also demonstrate several advantages of this platform for investigating the unsaturated soil seepage issue under transient flow conditions.


2021 ◽  
Author(s):  
Roberto Greco ◽  
Luca Comegna ◽  
Emilia Damiano ◽  
Pasquale Marino ◽  
Lucio Olivares

<p>Many mountainous areas of Campania, southern Italy, are characterized by steep slopes covered with shallow deposits of loose pyroclastic materials, usually in unsaturated conditions, mainly constituted by layers of volcanic ash and pumice lapilli. The total cover thickness is quite variable, between 1.5 m and 2.5 m in the steepest part of the slopes while it reaches several meters at the foot, and it lays upon fractured limestone bedrock. Such pyroclastic materials usually exhibit extremely high porosity (even up to 75%) and saturated hydraulic conductivity (in the order of 10<sup>-4</sup> m/s). The equilibrium of the soil cover is ensured, up to inclination angles of 50°, by the contribution of soil suction to shear strength. Wetting of the soil cover during rainfall infiltration can cause a reduction of suction and, therefore, of the effective shear strength. This action sometimes leads to the triggering of shallow landslides, which often develop in the form of fast and destructive flows.</p><p>To capture the main effects of precipitations on the equilibrium of these slopes, hydrological monitoring activities have been carried out at the slope of Cervinara, located around 40 km northeast of Naples, where a destructive flowslide occurred in December 1999. An automatic hydro-meteorological station was installed at the elevation of 585m a.s.l., immediately near the scarp of the major landslide occurred in 1999. The meteorological equipment includes a rain gauge, a thermo-hygrometer, a thermocouple for soil temperature, an anemometer, a pyranometer, and a barometric sensor. The hydrological equipment consists of six tensiometers (located at depths between -0.2 m and -3.0 m below the ground surface) and six metallic time domain reflectometry probes (buried at depths between -0.3 m and -2.0 m) for the measurements of soil suction and water content, respectively. Furthermore, the water level in two streams located at the foot of the slope has been first manually monitored every month, and then, since March 2019, one of the two stream sections was instrumented with a probe, measuring water pressure, temperature, and electrical conductivity with hourly resolution.</p><p>The measurements allowed quantifying the major hydrological processes draining the soil cover after rainwater infiltration (i.e. evapotranspiration, overland and sub-surface runoff, leakage through the soil-bedrock interface), eventually assessing the water balance of the slope for three hydrological years (2017-2018, 2018-2019, 2019-2020).  The field monitoring data allowed the identification of the complex hydrological processes involving the unsaturated pyroclastic soil and the shallow groundwater system developing in the limestone bedrock, which control the conditions that potentially predispose the slope to landslide triggering. Specifically, late autumn has been identified as the potentially most critical period, when drainage through the soil-bedrock interface is not yet effective, owing to the still dry conditions at the base of the soil cover, but the slope already receives large amounts of precipitation.</p>


Sign in / Sign up

Export Citation Format

Share Document